Study of a Clearing Electrode at KEKB - First beam test - Y. Suetsugu, H. Fukuma (KEK), M. Pivi, W. Lanfa (SLAC) 2008/3/3-61TLC08 Sendai.

Slides:



Advertisements
Similar presentations
S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance.
Advertisements

KEK Update on the status of the electron cloud studies at KEKB Contents Brief review of our studies Updates Clearing electrode Groove structure SEY measurement.
2006/9/25-26 ILCDR06, Cornell University 1 DESIGN STUDY OF A MOVABLE COLLIMATOR WITH LOW BEAM IMPEDANCE Yusuke Suetsugu*, Kyo Shibata KEKB Vac. Group Introduction.
Upgrade Plan of KEKB Vacuum system Pre-kickoff KEK1 Y. Suetsugu KEKB Vacuum Group Contents Challenges for vacuum system Designs for.
R&D Plan on Clearing Electrode using the KEKB LER Y. Suetsugu and H. Fukuma, KEKB M. Pivi and L. Wang, SLAC at KEK.
KEK Recent results of beam tests on clearing electrode and grooves 2010/1/191ILC DR WebEx Meeting Y. Suetsugu, KEK.
Review of Electron Cloud R&D at KEKB 1.Diagnostics 1.Beam Size Blow-up 2.Beam Instabilities 3.Electron Density 4.SEY (Secondary Electron Yield) 2.Mitigation.
2006/09/25-28 ILCDR06, Cornell University 1 Experimental Study on Suppression of Electron Cloud Effect at the KEKB Positron Ring Contents Introduction.
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Recent observations of collective effects at KEKB H. Fukuma, J. W. Flanagan, S. Hiramatsu, T. Ieiri, H. Ikeda, T. Kawamoto, T. Mitsuhashi, M. Tobiyama,
Vacuum Pressures at IR Contents Y.Suetsugu KEKB Vac. Group 1.Outline of Vacuum System at IR 2.Behavior of Pressures 3.Remedies for Heating of Vacuum Components.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
26-28 August 2008 Final EUROTeV Scientific Workshop, Uppsala University, Sweden 1 ILC DR vacuum system related problems and solutions Oleg B. Malyshev.
30/05-03/06/2007 LCWS2007 and ILC2007, DESY Hamburg Germany Vacuum System Specifications What needs to be specified in Vacuum Specification for ICL Damping.
STRIPLINE KICKER STATUS. PRESENTATION OUTLINE 1.Design of a stripline kicker for beam injection in DAFNE storage rings. 2.HV tests and RF measurements.
DR Vacuum Component Overview April 25, 2012 Joe Conway.
Electron Clouds at SLAC Johnny Ng ILC Damping Rings Collaboration Meeting March 4, 2009.
KICKER LNF David Alesini LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi, S. Guiducci.
Webex Electron Cloud Evaluations for ILC DR Mauro Pivi on behalf of the ILC Electron Cloud Working Group - by Webex - KILC12 – Daegu Korea April 25, 2012.
Updates of Electron Cloud Studies at KEKB Topics in 2008 Measurement of electron density in solenoid and Q field Mitigation using clearing electrode in.
BDS 11 Vacuum System for BDS [Completeness of RDR] Y. Suetsugu J. Noonan and P. Michelato Design principle Basic design Cost estimation.
ILC damping ring Workshop, Dec 19, 2007, KEK, L. WANG Ecloud simulation 2007 ILC Damping Rings Mini-Workshop December, 2007 Lanfa Wang, SLAC.
PEP-II Machine Advisory Committee Meeting SLAC, April 15-17, 2004 HOM Issues in LER Ring and IR. Recent measurements and calculations. Sasha Novokhatski.
SuperKEKB Vacuum System - for the positron ring - Y. Suetsugu KEKB Vacuum Group Outline Design and production status of key components Beam pipes for arc.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
ILC08 Chicago November 2008 Summary of Recent Results from SLAC M. Pivi, J. Ng, D. Arnett, G. Collet, T. Markiewicz, D. Kharakh, R. Kirby, F. Cooper,
26-October-2006 PEP-II MAC Session HOM measurement and analysis S. Weathersby, A. Novokhatski HOMs in LER region 4: overview, history Collimator wake fields.
Electron cloud in the wigglers of ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University.
CesrTA EC Build-Up and Mitigation Program - Introduction Mark Palmer June 25, 2009.
Beam Induced Pressure Rise in Ring, Dec. 9-12, Beam Induced Pressure Rise in Ring ~ Experiences in KEK B-Factory ~ 1. Introduction :KEK.
2009/1/16-18 ILD09 Seoul 1 Notes for ILD Beam Pipe (Technical Aspect) Y. Suetsugu, KEK Parasitic loss Vacuum pressure profile Some comments for beam pipe.
Study Plan of Clearing Electrode at KEKB Y. Suetsugu, H. Fukuma (KEK), M. Pivi, W. Lanfa (SLAC) 2007/12/191 ILC DR Mini Work Shop (KEK) Dec.
October 13,2010 WG Meeting Cornell U. Recommendation for Electron Cloud Mitigations in the ILC Damping Ring ILC DR Working Group October 13, 2010 Cornell.
Compare options: simulations recent history Cloud density near (r=1mm) beam (m -3 ) before bunch passage, values are taken at a cloud equilibrium density.
Compare options: simulations recent history Cloud density near (r=1mm) beam (m -3 ) before bunch passage, values are taken at a cloud equilibrium density.
ILC DR Workshop - KEK December, A new resonance in wiggler simulations: Christine Celata Use POSINST code.
Main features of PETS tank J. Calero, D. Carrillo, J.L. Gutiérrez, E. Rodríguez, F. Toral CERN, 17/10/2007 (I will review the present status of the PETS.
Recent Electron-Cloud Mitigation Studies at KEK E-cloud mitigation mini-workshop on November at CERN Kyo Shibata (for KEKB Group)
SKEKB Mini Work SKEKB Vacuum System – Arc Section – Contents Y.Suetsugu KEKB Vacuum Group 1.Beam Chambers 2.Pumps: Pump, Pressure,
3 rd INSTALLATION: chicane magnetic field tests PEP-II e+ ring 1 st and 2 nd Feb 2008 Electron cloud installation studies at SLAC ILC tests - SLAC Cherrill.
CesrTA Vacuum System Conversion and Operational Experiences Yulin Li for the CesrTA Team Cornell Laboratory for Accelerator-based ScienceS and Education.
Electron cloud in Final Doublet IRENG07) ILC Interaction Region Engineering Design Workshop (IRENG07) September 17-21, 2007, SLAC Lanfa Wang.
SPS coating studies 28 February, 2016TE-VSC1 Present situation of the development of e-cloud mitigation methods -MD 2011 results -Carbon coating of dipoles.
ILC GDE - ILCDR08 Cornell 8-11 July 2008 Electron Cloud Mitigation R&D at SLAC M. Pivi, D. Arnett, G. Collet, T. Markiewicz, D. Kharakh, R. Kirby, J. Seeman,
Electron cloud measurement in Cu/Al chambers with/without TiN coating at KEKB positron ring ILC DR Working Group Meeting Kyo Shibata (KEK)
Electron Cloud R&D at SLAC Johnny Ng SLAC DOE HEP Review July 7 – 9, 2008.
Electron Cloud Issues for the 3.2km Positron Damping Ring Mark Palmer (Cornell University) GDE January 18, 2011 ILC Baseline Assessment Workshop 2 SLAC.
Updates of EC Studies at KEKB 1.EC studies at KEKB 2.Recent results 1.Clearing Electrode 2.Groove surface 3.TiN coating 4.Measurement of EC in solenoid.
Measurement of the Electron Cloud Density in a Solenoid Field and a Quadrupole Field K. Kanazawa and H. Fukuma KEK June 2009 CTA09 1.
Recent ECLOUD07 Workshop in Daegu, S. Korea (~50 participants) –Highlights: Measurements of the surface Secondary Electron Yield (SEY) of samples inserted.
ECLOUD’12 (the 5 th electron-cloud workshop) Kyo Shibata (on behalf of KEKB Vacuum Group) SuperKEKB Vacuum System KEK Tsukuba site SuperKEKB Linac.
Electron Cloud Studies at DAFNE Theo Demma INFN-LNF Frascati.
2008/12/10 INFN R&D on Low Impedance Beam Chamber and Components Y. Suetsugu, for KEKB Vacuum Group Contents Introduction Beam Chamber Components Connection.
Electron Cloud in the International Linear Collider ILC Mauro Pivi work performed while at SLAC and the ILC Damping Ring Working Group High.
2007/03/1-2 ECL2, CERN 1 SEY and Clearing Studies at KEKB Contents Contents Introduction Studies Beam duct with Ante-chambers Coatings with Low SEY Clearing.
704 MHz cavity design based on 704MHZ_v7.stp C. Pai
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
Recent Studies on Electron Cloud at KEKB 1.EC studies at KEKB 2.Recent results –Clearing Electrode –Groove surface –EC measurement in Q and solenoid field.
International Linear Collider R&D on electron cloud (SLAC)
Development of X-band 50MW klystron in BVERI
Groove Mitigation and Plans
Electron Cloud Effects in SuperB
Measurement of Electron Cloud in KEKB LER with RFA
ILCDR08 10 July 2008 Plan of measuring cloud density in the solenoid field and in the quadrupole field K. Kanazawa (KEK)
Electron cloud and collective effects in the FCC-ee Interaction Region
First Results on Electron Cloud Generation and Trapping in a PSR Quadrupole Magnet R. J. Macek, A. A. Browman & L. J. Rybarcyk, 9/26/06 Acknowledgements:
CEPC 650MHz High Efficiency Klystron R&D
Lithium lens and window tests
Electron Clouds at SLAC
R&D GOALS AND MILESTONES TOWARDS A TECHNICAL DESIGN REPORT TDR (2008)
Presentation transcript:

Study of a Clearing Electrode at KEKB - First beam test - Y. Suetsugu, H. Fukuma (KEK), M. Pivi, W. Lanfa (SLAC) 2008/3/3-61TLC08 Sendai

Background Clearing Electrode = A possible solution to suppress electron cloud in magnets. –Drift space :Beam duct with antechamber (against photoelectrons) + TiN coating (against secondary electrons) + Solenoid will be OK. Experimental study on a clearing electrode using KEKB positron ring is planed, as a chain of ILC DR R&D study. Goal –Establish the technique of clearing electrode for ECI, which is available for high current machine and with a low beam impedance. –Demonstrate the effect on electron cloud formation. 2008/3/3-62TLC08 Sendai

Clearing Electrode Simulation (by L. Wang) 2008/3/3-63TLC08 Sendai Electron density Electrode (+) L. Wang et al, EPAC2006, p.1489

Test plan Install a test chamber with an electron monitor and a clearing electrode into a wiggler magnet of LER (Oho straight section). –At the most upstream side of wigglers Very weak SR –Magnetic field: 0.75 T –Effective length: 346 mm –Aperture (height): 110 mm Test chamber with antechambers Beam Gate Valve Wiggler magnets 2008/3/3-64TLC08 Sendai

Test Chamber Over all design of the test chamber 5 Electron Monitor Block Electrode Block Detachable Block Feed-through Magnet Top view Side view 2008/3/3-65TLC08 Sendai

Monitor and electrode Cross Section (concept) Electrode [W] (~ +1 kV) Collector (7 strips, w 5 mm) Cooling channel Insulator [Al 2 O 3 ] ( t ~0.2 mm) Grid (~ 1 kV) Vacuum seal by metal O-ring Cooling Water paths Shield Monitor Block Electrode Block  2 mm holes R47 Limited by magnet aperture ( w 40, l 440, t ~0.1) Beam 2008/3/3-66TLC08 Sendai

Features of the test chamber Electron monitor –Monitor and electrode are exchangeable. –Electron collectors are seven strips to measure the spacial distribution. Electrode –Strip type electrode. –Very thin electrode and insulator. Electrode: ~0.1 mm, Tungsten, by thermal spray. Insulator: ~0.2 mm, Al 2 O 3, by thermal spray.  Small beam impedance. –Water cooling just behind of the electrode. Absorb dissipated power in the electrode and the insulator. 2008/3/3-67TLC08 Sendai

RF properties Model (By MAFIA) Length = 2 m 1/4 model Electrode position = mm (430mm) Width = 40 mm Mesh sizes = 0.5 x 0.1 x 0.4 mm Bunch length = 6-8 mm Electrode thickness = 0.2 mm Alumina thickness = 0.2 mm Alumina  r =9.9 Port = 14 mm (o), 6 mm (i) (50  ) Embedded + Taper + Feed through Pipe (1/4) Electrode Feed through 2008/3/3-68TLC08 Sendai Taper

RF properties Impedance(z // ) (by MAFIA) 0.2 mm electrode 0.2 mm Al 2 O 3 Z // ~ a few Ohm Z // reduced to ~1/5 by decreasing the thicknesses 2008/3/3-69TLC08 Sendai k ~1.5x10 10 V/C including the connection part (2 electrodes). Dissipated power is ~ 120 W for 1 electrode. A,1585 bunches) Electrode ony (2 electrodes).

RF properties Voltage at feed through  z = 6 mm At 1.6 A (1585 bunches), Output voltage: V O ~450 V (If no resonance) Output power from feed – through: P O ~ 45 W (if R=50  Voltage between electrode and chamber: V ~ 9 V (If no resonance) Voltage at the end of 1C 2008/3/3-610TLC08 Sendai

Thermal calculation For the case of 100 W input on the surface 0.5 mm electrode 1.0 mm Al 2 O 3 MaterialThermal Conductivity [W/mm/K] SUS0.017 Al 2 O Heat transfer coefficient between chamber and water = 0.01 W/mm 2 /K Temperature of water = 25 degrees. 2008/3/3-611TLC08 Sendai 31.2  C(  T = 6  C) Stainless steel Tungsten Al 2 O 3 28  C (  T = 3  C) Cooling water

Manufacturing of electrode Electrode = Hot spray of tungsten (0.1 mm) Insulator = Hot spray of Al 2 O 3 (0.2 mm) 2008/3/3-612TLC08 Sendai Hole for feed-through Stainless steel Tungsten Al 2 O 3 Connection between electrode and feed-through

Assembly of electrode Connection part 2008/3/3-613TLC08 Sendai Connection to feed-throughMetal-coated Al 2 O 3 screw Copper bridge Metal screw 2.3 mm 34 mm Bakable up to 140  C

Manufacturing of chamber Test chamber ChamberFeed through 2008/3/3-614TLC08 Sendai Aluminum-alloy chamber N-type connector

Manufacturing of monitor Monitor block Monitor part Output feed-through 2008/3/3-615TLC08 Sendai Collector (7 strips)

Installation into KEKB Test chamber with only electrode was installed at first in Jan., –To check basic properties, such as heating. Outside of magnet in case. 2008/3/3-616TLC08 Sendai Cooling water ~1.9 l/min. Test chamberLead shielding

Power Supply Basic configuration of power supply 2008/3/3-617TLC08 Sendai Electrode 1.5 kV, 30 mA LPF f c = 300MHz Input impedance NH-5D-2E 100m 50  2.1  F 37.5  (Equivalent in AC) Inside Power supply HV , Takasago Tunnel

Beam test Measurement of bunch signals –1585 bunches 2008/3/3-618TLC08 Sendai 2  s/div. 500mV/div. Train 1200mA 500mV/div. 1250mA 5ns/div. Measured: 1 V p-p at 1250 mA. If attenuation of the cable is about 30db, the voltage at feed-through is about 30 V. Lower than expected. Mismatch of impedance? Without LPF

Beam test Measurement of electron current (DC mode) –1585 bunches, at 1.6 A 2008/3/3-619TLC08 Sendai I e increases with V a, but slowly for V a >300 V. Small I e for negative V a.  Main electrons are photoelectron from side walls. Photon density at the test chamber is ~2x10 17 photons/s/m.If the photoelectron yield is 0.2, the expected electron current is ~2.6 mA (for 0.4m).

Beam test Measurement of electron current (DC mode) –1585 bunches 2008/3/3-620TLC08 Sendai I e dependence on the beam current approaches to a line as increasing V a, especially for high current region. Why? Multipactoring of electron is suppressed?? Further study using monitor is required.

Beam test Heating of feed-through 2008/3/3-621TLC08 Sendai The feed-through is now cooled by air fan. The neck will be cooled by a block with cooling water. Heating due to mismatch of impedance?  T = 13  C (with fan) Cooling fan May be  T = 100  C without fan

Beam test Heating of electrode block and dummy block 2008/3/3-622TLC08 Sendai  T = 2.8  1.6A Electrode block Just behind of electrode block Near to expectation.  T = 2.8  C

Beam test Absorbed power 2008/3/3-623TLC08 Sendai Temperature rise:  T = 1.4  A P = 70x1.9x1.4 = 190 W Inlet of cooling water Outlet of cooling water Flow rate: 1.9 l/min.  Absorbed power: Calculation: ~130 W The value is reasonable considering the additional loss by tapers

Summary Clearing electrode has been studied for a cure of EC in magnets at KEKB. –Thin electrode and insulator contribute to decrease the impedance. Beam test of the electrode started from February. –The heating is almost reasonable, except for that at feed-through port. –The behavior of electron current is reasonable. –The first available clearing electrode for high current (~1.6 A) and short bunch (~7mm) machine. Problem to be solved –Heating at feed through Mismatch of impedance? –Long-term stability Change of insulating resistance ? 2008/3/3-624TLC08 Sendai

Test schedule First step (from February, 2008) –Install outside of magnet (upstream side) –Check the heating of electrode –Measurement with electron monitor.  Next week? Second step –Install into the wiggler magnet with electron monitor Third step –Groove surface, Rough surface, and other promising methods. Beam First stepSecond step 2008/3/3-625TLC08 Sendai   