162 Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)

Slides:



Advertisements
Similar presentations
18-1 Carboxyl Derivatives Classes shown, formally, via dehydration.
Advertisements

In this chapter, we focus on four classes of organic compounds derived from carboxylic acids. Under the general formula of each is a drawing to show how.
Chapter 20 Carboxylic Acids and Nitriles
Carboxylic acids - Nucleofilic acyl substitution reaction Dr AKM Shafiqul Islam School of Bioprocess Engineering.
Chapter 21: Carboxylic Acid Derivatives
Chapter 21. Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions Based on McMurry’s Organic Chemistry, 7th edition.
Nucleophilic Acyl Substitution
ALDEHYDES AND KETONES BY: SALEHA SHAMSUDIN.
Modified slides of William Tam & Phillis Chang Ch Chapter 17 Carboxylic Acids and Their Derivatives NucleophilicAddition–Elimination at the Acyl.
The functional group of a carboxylic acid is a carboxyl group
Chapter 9 Aldehydes and Ketones: Nucleophilic Addition Reactions.
Carboxylic Compounds Acyl group bonded to X, an electronegative atom or leaving group Includes: X = halide (acid halides), acyloxy (anhydrides), alkoxy.
165 Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 20.1: Nomenclature of Carboxylic Acid Derivatives (please read)
Carboxylic acids and derivatives
PPT 102 ORGANIC CHEMISTRY 1 SEM 1 (2012/2013) 1. © 2011 Pearson Education, Inc. Outline Nomenclature Physical Properties General Mechanism for Nucleophile.
Chapter 18 Carboxylic Acid Derivatives
1Spring, 2011 Organic Chemistry II Carboxylic Acid Derivatives Dr. Ralph C. Gatrone Department of Chemistry and Physics Virginia State University.


74 Chapter 15: Alcohols, Diols, and Thiols 15.1: Sources of Alcohols (please read) Hydration of alkenes (Chapter 6) 1. Acid-catalyzed hydration 2. Oxymercuration.
John E. McMurry Paul D. Adams University of Arkansas Chapter 20 Carboxylic Acids and Nitriles.
Chapter 18 Carboxylic Acids and Their Derivatives
Carboxylic Acids and Their Derivatives—Nucleophilic Acyl Substitution
Chemistry.
Chapter 21. Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution Reactions Based on McMurry’s Organic Chemistry, 6 th edition.
CH 20: Carboxylic Acids and Nitriles Renee Y. Becker CHM 2211 Valencia Community College 1.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Dr. Wolf's CHM 201 & Nucleophilic Substitution in Acyl Chlorides.
Chapter 18 Carboxylic Acids and Their Derivatives
Created by Professor William Tam & Dr. Phillis Chang Ch Chapter 17 Carboxylic Acids and Their Derivatives NucleophilicAddition–Elimination at the.
Addition–Elimination
John E. McMurry Paul D. Adams University of Arkansas Nucleophilic Acyl Substitution Reactions.
Chapter 21: Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution Reactions.
Aldehydes & Ketones: Part II
© 2011 Pearson Education, Inc. 1 Organic Chemistry 6 th Edition Paula Yurkanis Bruice Chapter 18 Carbonyl Compounds II Reactions of Aldehydes and Ketones.
Carboxylic Acids: Part I
Chapter 19 Substitutions at the Carbonyl Group
Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon.

15-1 Chemistry 2060, Spring 2060, LSU Chapter 15: Functional Derivatives of Carboxylic Acids Sections
Chapter 14 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 14.1 Carboxylic Acid Derivatives and Nomenclature 14.2 Structure of carboxylic.
CH-5 Organic Chemistry-2 Prepared By Dr. Khalid Ahmad Shadid & Prof Dr. Abdelfattah Haikal Islamic University in Madinah Department of Chemistry Carboxylic.
C ARBOXYLIC A CID D ERIVATIVES S TRUCTURE Carboxylic acid derivatives are compounds that yield carboxylic acids upon hydrolysis. Different derivatives.
Carboxylic Acids and Derivatives. Naming Carboxylic Acids Starting materials for acyl derivatives (esters, amides, and acid chlorides) Abundant in nature.
Carboxylic Acids and Nitriles
Organic Chemistry Chapter 10 Part I
Organometallic reagents convert alkanoyl chlorides into ketones.
Chapter 21 The Chemistry of Carboxylic Acid Derivatives.
20-1 Relative Reactivities, Structures and Spectra of Carboxylic Acid Derivatives Carboxylic acid derivatives undergo substitution reactions via the (often.
234 Chapter 24: Phenols. Chapter 24: Phenols. Alcohols contain an OH group bonded to an sp 3 -hybridized carbon. Phenols contain an OH group bonded to.
Chem 3313 W.J. Baron Spring MWF Chapter 12 Nucleophilic Addition and Substitution at Carbonyl Groups Nucleophilic Addition to a Carbonyl Group Nucleophilic.
John E. McMurry Paul D. Adams University of Arkansas PREVIEW TO CARBONYL CHEMISTRY.
Carboxylic Acids and Nitriles
© 2006 Thomson Higher Education Chapter 15 Carboxylic Acids and Nitriles.
Chapter 20: Carboxylic Acids and Nitriles Based on McMurry’s Organic Chemistry, 6 th edition ©2003 Ronald Kluger Department of Chemistry University of.
Chapter 17 Carboxylic Acids and Their Derivatives Nucleophilic
Based on McMurry’s Organic Chemistry, 6th edition ©2003 Ronald Kluger
Ch 17- Carboxylic Acids and their derivatives
Hydrolysis of Nitriles
Carboxylic Acids and Their Derivatives
20.13 Hydrolysis of Amides Dr. Wolf's CHM 201 &
Carboxylic Acids and Their Derivatives
Chapter 9 Aldehydes and Ketones: Nucleophilic Addition Reactions
Chapter 20: Carboxylic Acids and Nitriles
Chapter 20 Carboxylic Acids
Fundamentals of Organic Chemistry
of carbonyl group chemistry
Fundamentals of Organic Chemistry
Chapter 20: Carboxylic Acids and Nitriles
Presentation transcript:

162 Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)

163 Y = a leaving group -Cl, -O 2 CR’, -OR’, -OH, -NR 2, 19.3: General Mechanism for Nucleophilic Acyl Substitution Mechanism occurs in two stages. The first is addition of the Nucleophile (Nu) to the carbonyl carbon to form a tetrahedral intermediate. The second stage in collapse of the tetrahedral intermediate to reform a carbonyl with expulsion of a leaving group (Y). There is overall substitution of the leaving group (Y) of the acid derivative with the nucleophile (Nu).

: Structure and Reactivity of Carboxylic Acid Derivatives Increasing reactivity All acyl derivatives can be prepared directly from the carboxylic acid. Less reactive acyl derivative (amides and esters) are more readily prepared from more reactive acyl derivatives (acid chlorides and anhydrides)

165 The reactivity of the acid derivative is related to it resonance stabilization. The C-N bond of amides is significantly stabilized through resonance and is consequently, the least reactive acid derivative. The C-Cl bond of acid chlorides is the least stabilized by resonance and is the most reactive acid derivative

: Nucleophilic Acyl Substitution in Acyl Chlorides Preparation of acid chlorides from carboxylic acids Reagent: SOCl 2 (thionyl chloride) Nucleophilic acyl substitution reactions of acid halides (Table 19.1) 1. Anhydride formation (Ch. 19.4): Acid chlorides react with carboxylic acids to give acid anhydrides Acid chlorides are much more reactive toward nucleophiles than alkyl chlorides

Aminolysis (Ch. 19.4): Reaction of acid chlorides with ammonia, 1° or 2° amines to afford amides. 4. Hydrolysis (Ch. 19.4): Acid chlorides react with water to afford carboxylic acids 2. Alcoholysis (Ch. 15.8): Acid chlorides react with alcohols to give esters. reactivity: 1° alcohols react faster than 2° alcohols, which react faster than 3° alcohols

: Nucleophilic Acyl Substitution in Acid Anhydrides Anhydrides are prepared from acid chlorides and a carboxylic acid Reactions of acid anhydrides (Table 19.2) Acid anhydrides are slightly less reactive reactive that acid chlorides; however, the overall reactions are nearly identical and they can often be used interchangeably. 1.Alcoholysis to give esters (Ch. 15.8): 1.Aminolysis to give amides (Ch ): 1.Hydrolysis to give carboxylic acids (Ch. 19.5):

: Sources of Esters Preparation of esters (Table 19.3, p. 826) 1.Fischer Esterification (Ch & 18.14) 2.Reaction of acid chlorides or acid anhydrides with alcohols (Ch & 19.4): 3.Baeyer-Villiger oxidation of ketones (p. 772)

: Physical Properties of Esters. (please read) 19.8: Reactions of Esters: A Review and a Preview. Nucleophilic acyl substitution reactions of esters (Table 19.4). Esters are less reactive toward nucleophilic acyl substitution than acid chlorides or acid anhydrides. 1. Aminolysis (Ch.19.11): Esters react with ammonia, 1° and 2° amines to give amides 2. Hydrolysis (Ch ): Esters can be hydrolyzed to carboxylic acids under basic conditions or acid-catalysis.

171 Table 19.5 Esters react with Grignard reagents to give tertiary alcohols. two equivalents of the Grignard reagent adds to the carbonyl carbon. (Ch ) Esters are reduced by LiAlH 4 (but not NaBH 4 ) to primary alcohols. (Ch )

: Acid-catalyzed Ester Hydrolysis. Reverse of the Fischer esterification reaction. (Mechanism 19.3, p. 830) Protonation of the ester carbonyl accelerates nucleophic addition of water to give the tetrahedral intermediate. Protonation of The -OR’ group, then accelerates the expulsion of HOR.

: Ester Hydrolysis in Base: Saponification Mechanism of the base-promoted hydrolysis (Mechanism 19.4, p. 835) Why is the saponification of esters not base-catalyzed?

: Reaction of Esters with Ammonia and Amines. Esters react with ammonia, 1°, and 2° amines to give amides (Mechanism 19.5, p. 837). pK a ~ 10 pK a ~ 16

: Reaction of Esters with Grignard Reagents: Synthesis of Tertiary Alcohols – mechanism 19.5, p : Reaction of Esters with Lithium Aluminium Hydride. Esters are reduced to 1° alcohols by reduction with LiAlH 4 (but not NaBH 4 or catalytic hydrogenation).

: Amides amide bond has a large dipole moment ~ 3.5 Debye H 2 O = 1.85 D NH 3 = 1.5 D H 3 CNO 2 = 3.5 The N-H bond of an amide is a good hydrogen bond donor and The C=O is a good hydrogen bond acceptor.

177 Acidity of Amides: The resulting negative charge from deprotonation of an amide N-H, is stabilized by the carbonyl Increasing reactivity

178 Synthesis of Amides: Amides are most commonly prepared from the reactions of ammonia, 1° or 2° amines with acids chlorides, acid anhydrides or esters. This is a nucleophilic acyl substitution reaction. When an acid chloride or anhydride is used, a mol of acid (HCl or carboxylic acid) is produced. Since amines are bases, a second equivalent (or an equivalent of another base such as hydroxide or bicarbonate) is required to neutralize the acid

: Hydrolysis of Amides. Amides are hydrolyzed to the carboxylic acids and amines Acid-promoted mechanism (Fig. 19.6, p. 844) Base-promoted mechanism (Fig. 19.7, p. 846)

: Lactams. (please read) cyclic amides  -lactams (4-membered ring lactams) are important acti-bacterial agents. Penicillin GAmoxicillinCephalexin 19.17: Preparation of Nitriles (Table 19.6) 1.Reaction of cyanide ion with 1° and 2° alkyl halides- this is an S N 2 reaction. (Ch. 8.1 & 8.12) 2.Cyanohydrins- reaction of cyanide ion with ketones and aldehydes. (Ch. 17.7) 3.Dehydration of primary amides with SOCl 2 (or P 4 O 10 ) Dehydration: formal loss of H 2 O from the substrate

: Hydrolysis of Nitriles. Nitriles are hydrolyzed in either aqueous acid or aqueous base to give carboxylic acids. The corresponding primary amide is an intermediate in the reaction. Base-promoted mechanism (Mechanism. 19.8, p. 851) Acid-promoted hydrolysis:

: Addition of Grignard Reagents to Nitriles. One equiv. of a Grignard Reagent will add to a nitrile. After aqueous acid work-up, the product is a ketone. aldehydes & ketones  ~ 2.8 D nitriles  ~ 3.9 D Must consider functional group compatibility; there is wide flexibility in the choice of Grignard reagents.

: Spectroscopic Analysis of Carboxylic Acid Derivatives IR: typical C=O stretching frequencies for: carboxylic acid: 1710 cm -1 ester: 1735 cm -1 amide: 1690 cm -1 aldehyde: 1730 cm -1 ketone 1715 cm -1 anhydrides 1750 and 1815 cm -1 Conjugation (C=C  -bond or an aromatic ring) moves the C=O absorption to lower energy (right) by ~15 cm -1

184 1 H NMR: Protons on the  -carbon (next to the C=O) of esters and amides have a typical chemical shift range of  ppm Proton on the carbon attached to the ester oxygen atom have a typical chemical shift range of  ppm The chemical shift of an amide N-H proton is typically between 5-8 ppm. It is broad and often not observed.  3.4 2H, q, J= 7.0  1.1 3H, t, J= 7.0  2.0 3H, s NH  = 4.1 q, J=7.2 Hz, 2H  = 2.0 s, 3H  = 1.2 t, J=7.2 Hz, 3H

C NMR: very useful for determining the presence and nature of carbonyl groups. The typical chemical shift range for C=O carbon is  ppm Aldehydes and ketones:  ppm Carboxylic acids, esters and amides:  ppm CDCl 3

186 Nitriles have a sharp IR C  N absorption near 2250 cm  1 for alkyl nitriles and 2230 cm  1 for aromatic and conjugated nitriles (highly diagnostic) The nitrile function group is invisible in the 1 H NMR. The effect of a nitrile on the chemical shift of the protons on the  -carbon is similar to that of a ketone. The chemical shift of the nitrile carbon in the 13 C spectrum is in the range of ~ (significant overlap with the aromatic region).  = 119

187 C 11 H 12 O CDCl  7.7 1H, d, J= 15.0  6.4 1H, d, J= 15.0  7.5 2H, m  7.3 3H, m  4.2 2H, q, J= 7.0  1.3 3H, t, J= H NMR 13 C NMR TMS IR

188 C 10 H 11 N 7.3 (5H, m) 3.72 (1H, t, J=7.1) 1.06 (3H, t, J=7.4) 1.92 (2H, dq, J=7.4, 7.1) CDCl 3 TMS