Graphing Sine and Cosine

Slides:



Advertisements
Similar presentations
Graphs of Trigonometric Functions
Advertisements

Graphs of Tangent and Cotangent Functions
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Unit Circle Approach.
Copyright © 2009 Pearson Addison-Wesley Graphs of the Circular Functions.
Trigonometric Functions
Graphs of the Sine, Cosine, & Tangent Functions Objectives: 1. Graph the sine, cosine, & tangent functions. 2. State all the values in the domain of a.
Chapter 4: Graphing & Inverse Functions
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. 4 Trigonometric Functions.
4.5 Graphs of Sine and Cosine Functions. In this lesson you will learn to graph functions of the form y = a sin bx and y = a cos bx where a and b are.
Graphs of Trigonometric Functions Digital Lesson.
Amplitude, Period, & Phase Shift
Unit 7: Trigonometric Functions
4.4 Graphs of Sine and Cosine: Sinusoids. By the end of today, you should be able to: Graph the sine and cosine functions Find the amplitude, period,
1 Properties of Sine and Cosine Functions The Graphs of Trigonometric Functions.
Graphs Transformation of Sine and Cosine
Graphs of Sine and Cosine Five Point Method. 2 Plan for the Day Review Homework –4.5 P odd, all The effects of “b” and “c” together in.
Chapter 4: Graphing & Inverse Functions Sections 4.2, 4.3, & 4.5 Transformations Sections 4.2, 4.3, & 4.5 Transformations.
Trigonometric Review 1.6. Unit Circle The six trigonometric functions of a right triangle, with an acute angle , are defined by ratios of two sides.
Lesson 4-6 Graphs of Secant and Cosecant. 2 Get out your graphing calculator… Graph the following y = cos x y = sec x What do you see??
Chapter 4 Trigonometric Functions
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Symmetry with respect to a point A graph is said to be symmetric with respect to.
Trigonometric Functions
Slide 8- 1 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Section 5.3 Trigonometric Graphs
Amplitude, Period, and Phase Shift
Graphs of Cosine Section 4-5.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Graphs of the Circular Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1.
14.1, 14.2 (PC 4.5 & 4.6): Graphing Trig Functions HW: p.912 (3-5 all) HW tomorrow: p.913 (6, 10, 16, 18), p.919 (12-16 even) Quiz 14.1, 14.2: Tuesday,
Chp. 4.5 Graphs of Sine and Cosine Functions p. 323.
Graphs of Trigonometric Functions Digital Lesson.
Graph Trigonometric Functions
Do Now:. 4.5 and 4.6: Graphing Trig Functions Function table: When you first started graphing linear functions you may recall having used the following.
Graphs of Trigonometric Functions. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 DAY 1 : OBJECTIVES 1. Define periodic function.
Chapter 14 Day 8 Graphing Sin and Cos. A periodic function is a function whose output values repeat at regular intervals. Such a function is said to have.
4.5 Graphs of Trigonometric Functions 2014 Digital Lesson.
Graphs of Trigonometric Functions Digital Lesson.
More Trigonometric Graphs
Writing Equations of Trigonometric Graphs Dr. Shildneck Fall.
Graphs of Trigonometric Functions. Properties of Sine and Cosine Functions 2 6. The cycle repeats itself indefinitely in both directions of the x-axis.
1 Properties of Sine and Cosine Functions MATH 130 Lecture on The Graphs of Trigonometric Functions.
What do these situations have in common? Explain..
Precalculus 1/9/2015 DO NOW/Bellwork: 1) Take a unit circle quiz 2) You have 10 minutes to complete AGENDA Unit circle quiz Sin and Cosine Transformations.
Unit 7: Trigonometric Functions Graphing the Trigonometric Function.
Section 4.2 The Unit Circle.
Definition, Domain,Range,Even,Odd,Trig,Inverse
Properties of Sine and Cosine Functions
Trigonometric Graphs 6.2.
Amplitude, Period, & Phase Shift
Graphs of Trigonometric Functions
Graphs of Sine and Cosine Functions
Warm Up The terminal side passes through (1, -2), find cosƟ and sinƟ.
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Trigonometric Graphs 1.6 Day 1.
Graphs of Trigonometric Functions
Amplitude, Period, and Phase Shift
Graphs of Trigonometric Functions
Amplitude, Period, & Phase Shift
Unit 7: Trigonometric Functions
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Graphs of the Sine and Cosine Functions
Graphs of Trigonometric Functions
4.4 Graphs of Sine and Cosine Functions
Graphs of Secant, Cosecant, and Cotangent
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Presentation transcript:

Graphing Sine and Cosine Pre Calculus Graphing Sine and Cosine

What you will learn How to graph sine and cosine functions. How to translate sine and cosine functions (shift, left, right, vertical stretch, horizontal stretch) How to use key points to “sketch” a graph.

Plan Discuss how to use the Unit Circle to help with graphing Graphing Sine and Cosine and their translations

Fundamental Trigonometric Identities for Cofunction Identities sin  = cos(90  ) cos  = sin(90  ) sin  = cos (π/2  ) cos  = sin (π/2  ) tan  = cot(90  ) cot  = tan(90  ) tan  = cot (π/2  ) cot  = tan (π/2  ) sec  = csc(90  ) csc  = sec(90  ) sec  = csc (π/2  ) csc  = sec (π/2  ) Reciprocal Identities sin  = 1/csc  cos  = 1/sec  tan  = 1/cot  cot  = 1/tan  sec  = 1/cos  csc  = 1/sin  Quotient Identities tan  = sin  /cos  cot  = cos  /sin  Pythagorean Identities sin2  + cos2  = 1 tan2  + 1 = sec2  cot2  + 1 = csc2  Fundamental Trigonometric Identities for

Review of Even and Odd Functions Cosine and secant functions are even cos (-t) = cos t sec (-t) = sec t Sine, cosecant, tangent and cotangent are odd sin (-t) = -sin t csc (-t) = -csc t tan (-t) = -tan t cot (-t) = -cot t

Graphing – Sine and Cosine

Key Things to Discuss Shape of the functions Using the Unit Circle to help identify key points Periodic Nature Translations that are the same as other functions we have studied Translations that are different than others we have studied Using the calculator and correct interpretation of the calculator

Shape of Sine and Cosine The unit circle: we imagined the real number line wrapped around the circle. Each real number corresponded to a point (x, y) which we found to be the (cosine, sine) of the angle represented by the real number. To graph the sine and cosine we can go back to the unit circle to find the ordered pairs for our graph.

Let’s convert some of these numbers to decimal form – start with cosine

Cosine Key Features to define the shape Input: x Angle Output: Cos x 1 max π/6 .87 π/4 .71 π/3 .5 π/2 int 2π/3 -.5 3π/4 -.71 5π/6 -.87 π -1 min 7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π

Shape Calculator Mode: Radians Window: Xmin 0 Xmax 2 Xscl /2 Ymin -2 Ymax +2 Yscl .5 Y=cos x

Cosine For the function: The angle is the input or independent variable and the cosine ratio is the output or dependent variable. From a unit circle perspective, the input is the angle and the output is the “x” coordinate of the ordered pair. Remember “coterminal angles” every 2π the values will repeat – this is called a periodic function We will use the interval [0, 2π] as the reference period.

Graph of the Cosine Function To sketch the graph of y = cos x first locate the key points. These are the maximum points, the minimum points, and the intercepts. 1 -1 cos x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = cos x Cosine Function

Worksheet Let’s graph it!

Now let’s look at Sine

Let’s convert some of these numbers to decimal form – start with sine

Sine Key Features to define the shape Input: x Angle Output sin x int π/6 .5 π/4 .71 π/3 .87 π/2 1 max 2π/3 3π/4 5π/6 Output: π 7π/6 -.5 5π/4 -.71 4π/3 -.87 3π/2 -1 min 5π/3 7π/4 11π/6 2π

Shape Calculator Mode: Radians Window: Xmin 0 Xmax 2 Xscl /2 Ymin -2 Ymax +2 Yscl .5 Y=sin x

Graph of the Sine Function To sketch the graph of y = sin x first locate the key points. These are the maximum points, the minimum points, and the intercepts. -1 1 sin x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = sin x Sine Function

Properties of Sine and Cosine Functions The graphs of y = sin x and y = cos x have similar properties: 1. The domain is the set of real numbers. 2. The range is the set of y values such that . 3. The maximum value is 1 and the minimum value is –1. 4. The graph is a smooth curve. 5. Each function cycles through all the values of the range over an x-interval of . 6. The cycle repeats itself indefinitely in both directions of the x-axis. Properties of Sine and Cosine Functions

Transformations – A look back Let’s go back to the quadratic equation in graphing form: y = a(x – h)2 + k If a < 0: reflection across the x axis |a| > 1: stretch; and |a| < 1: shrink (h, k) was the vertex (locator point) h gave us the horizontal shift k gave us the vertical shift

Transforming the Cosine (or Sine) y = a (cos (bx – c)) + d Let’s look at a |a| is called the amplitude, like our other functions it is like a stretch If a < 0 it also causes a reflection across the x-axis Graph y = cos x and y = 3 cos x y = cos x and y = -3 cos x

Key Points Amplitude – increase the output by a factor of the amplitude Remember the amplitude is always positive so you have to apply any reflections y = 3 cos x 1 -1 cos x x 3 -3 cos x x

Example: Sketch the graph of y = 3 cos x on the interval [–, 4]. Partition the reference interval [0, 2] into four equal parts. Find the five key points; graph one cycle; then repeat the cycle over the interval. max x-int min 3 -3 y = 3 cos x 2  x y x (0, 3) ( , 3) ( , 0) ( , 0) ( , –3) Example: y = 3 cos x

If |a| > 1, the amplitude stretches the graph vertically. The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| > 1, the amplitude stretches the graph vertically. If 0 < |a| < 1, the amplitude shrinks the graph vertically. If a < 0, the graph is reflected in the x-axis. y x y = 2 sin x y = sin x y = sin x y = – 4 sin x reflection of y = 4 sin x y = 4 sin x Amplitude

Transforming the Cosine (or Sine) y = a (cos (bx – c)) + d Let’s look at d Just like in our other functions, d is the vertical shift, if d is positive, it goes up, if it is negative, it goes down. Graph y = cos x and y = cos x + 1 y = cos x and y = cos x – 2

Vertical Shift 1 -1 cos x x y = cos x + 1 Begin with y = cos x Add d to the output to adjust the graph Then shift up one unit y x 2 1 cos x x

Transforming the Cosine (or Sine) y = a (cos (bx – c)) + d Let’s look at c Just like in our other functions, c is the horizontal shift, if c is positive, it goes right, if it is negative, it goes left. If there is no b present, it is the same as other functions Graph: y = cos x and y = cos (x + π/2) y = cos x and y = cos (x - π/2)

Horizontal shift y = cos (x + π/2) Begin with y = cos x 1 -1 cos x x y = cos (x + π/2) Begin with y = cos x Now you must translate the input… the angle Then shift left π/2 units y x 1 -1 cos x x

Transforming Cosine (or Sine) y = a (cos (bx – c)) + d Let’s look at b Graph: y =cos x and y =cos 2x (b = 2) y =cos x and y =cos ½ x (b = ½ ) What happened?

Transforming the Period b has an effect on the period (normal is 2π) If b > 1, the period is shorter, in other words, a complete cycle occurs in a shorter interval If b < 1, the period is longer or a cycle completes over an interval greater than 2π To determine the new period = 2π/b

If b > 1, the graph of the function is shrunk horizontally. The period of a function is the x interval needed for the function to complete one cycle. For b  0, the period of y = a sin bx is . For b  0, the period of y = a cos bx is also . If b > 1, the graph of the function is shrunk horizontally. y x period: period: 2 If 0 < b < 1, the graph of the function is stretched horizontally. y x period: 4 period: 2 Period of a Function

Summarizing … Standard form of the equations: y = a (cos (bx – c)) + d y = a (sin (bx – c)) + d “a” - |a| is called the amplitude, like our other functions it is like a stretch it affects “y” or the output If a < 0 it also causes a reflection across the x- axis “d” – vertical shift, it affects “y” or the output “c” – horizontal shift, it affects “x” or “θ” or the input “b” – period change (“squishes” or “stretches out” the graph The combination of “b” and “c” has another effect that we will discuss next time.

Next class We will get into the detail of transforming the period when both b and c are present We will graph using a “key point” method We will talk about how the calculator can help and how you need to be careful with setting windows.

Calculator Issues Window settings Using your reference period to set your window Setting your scale

Homework 24 Section 4.5, p. 307 3-21 odd, 23-26 all