2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.

Slides:



Advertisements
Similar presentations
Simulated synchrotron emission from Pulsar Wind Nebulae Delia Volpi Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italia.
Advertisements

(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from.
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
European Space Astronomy Centre (ESAC) May 23, 2013.
Recent developments in the theory of Pulsar Wind Nebulae (Plerions) Yves Gallant LPTA, Université Montpellier II (relativistic) magneto-hydrodynamics of.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
The Evolution & Structure of Pulsar Wind Nebulae Gaensler, B. M., & Slane P.O. ARA&A, 2006, 44:17.
Challenges of Relativistic Jets - Cracow (June 2006) Patrick Slane Pulsar Winds and Jets Pat Slane (Harvard-Smithsonian Center for Astrophysics)
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
25 ii 2011NASM1 Exploring the Crab Nebula with the Hubble, Chandra and Fermi Space Telescopes Roger Blandford KIPAC Stanford.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
Young X-ray pulsars and ULXs Roberto Soria (MSSL) Roberto Soria (MSSL) Thanks also to: Rosalba Perna (JILA-Boulder) Luigi Stella (INAF-Rome)
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Engine-Driven Supernovae Alicia M. Soderberg Caltech Astronomy Dept. Zwicky Supernova Workshop January
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Spectral analysis of non-thermal filaments in Cas A Miguel Araya D. Lomiashvili, C. Chang, M. Lyutikov, W. Cui Department of Physics, Purdue University.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
Synchrotron Radiation, continued Rybicki & Lightman Chapter 6 Also Course notes for “Essential Radio Astronomy” at NRAO, Condon & Ransom
Three types of PWN for IBIS/ISGRI: Seen by IBIS - some discussed here ~ 10 (16%) Pulsar seen in radio but not seen by IBIS ~ 25 (42%) No radio pulsar.
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
The TeV view of the Galactic Centre R. Terrier APC.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
The “Crab Nebula”: the most famous supernova remnant. distance  2000 pc diameter  3 pc.
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
2009 Fermi Symposium, Washington, DC Patrick Slane (CfA) Supernova Remnants and Pulsar Wind Nebulae in the Fermi Era Collaborators: D. Castro S. Funk Y.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
The X-ray Universe Sarah Bank Presented July 22, 2004.
1 X-ray enhancement and long- term evolution of Swift J arXiv: Authors: O. Benli, S. Caliskan, U. Ertan et al. Reporter: Fu, Lei.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Harvard-Smithsonian Center for Astrophysics Patrick Slane Pulsar Wind Nebulae.
Death of Stars II Physics 113 Goderya Chapter(s): 14
Particle Acceleration by Relativistic Collisionless Shocks in Electron-Positron Plasmas Graduate school of science, Osaka University Kentaro Nagata.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Harvard-Smithsonian Center for Astrophysics Patrick Slane The Remnants of Supernovae.
COSPAR 2008, Montreal, 18 July Patrick Slane (CfA) Pulsar Wind Nebulae Observations of.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Heidelberg 2008 Patrick Slane (CfA) Pulsar Wind Nebulae.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Extended X-ray object ejected from the PSR B /LS 2883 binary Jeremy Hare (George Washington University) Oleg Kargaltsev (George Washington University)
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
Observation of Pulsars and Plerions with MAGIC
Fermi Collaboration Meeting
Modelling of non-thermal radiation from pulsar wind nebulae
XMM-Newton Observation of the composite SNR G0. 9+0
Presentation transcript:

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside a Supernova Remnant Joseph Gelfand (NYU / NSF) Patrick Slane (CfA), Weiqun Zhang (NYU) arxiv:

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era2 Pulsar Wind Nebula inside a Supernova Remnant Neutron Star Initial Spin Period and Spin-down Luminosity Spin-down Timescale Braking Index Pulsar Wind Fraction of energy in magnetic field, electrons, and ions Acceleration mechanism: minimum and maximum particle energy, energy spectrum Progenitor Supernova Ejecta Mass Initial Kinetic Energy

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era3 Schematic of a Pulsar Wind Nebula inside a Supernova Remnant Neutron Star Pulsar Wind Termination Shock Magnetic Field:  B Ė Electrons:  e Ė Ions:  i Ė Injection Spectrum Pulsar Wind Nebula Pressure: P pwn Magnetic Field: B pwn Swept-up Material Mass: M sw,pwn Velocity: v pwn Supernova Remnant Pressure: P snr (R pwn ) Velocity: v snr (R pwn ) Density:  snr (R pwn ) Ejecta mass: M ej Kinetic energy: E sn Density ISM: n ism (Gelfand et al. 2009, ApJ submitted) 4πR pwn 2 P pwn 4πR pwn 2 P snr (R pwn ) Emission: Synchrotron Inverse Compton off CMB Synchrotron Self-Compton Inverse Compton off Starlight

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era4 Model Limitations and Advantages Model Limitations: Can not reproduce morphological features inside the PWN (e.g. jets and torus) Can not reproduce spectral variations inside PWN Can only estimate effect of instabilities (e.g. Raleigh-Taylor) on PWN. Model Advantages: Simultaneously predict both dynamical and radiative properties of PWN Computationally inexpensive Easily adjustable Well suited for parameter exploration, error analysis Applicable to many systems (Figure 3; Mori et al. 2004)

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era5 Dynamical and Radiative Evolution for a Trial Set of Parameters Neutron Star properties: Ė 0 = ergs/s  sd = 500 years p = 3 v psr = 120 km/s Pulsar Wind properties:  e = 0.999,  B = 0.001,  i = 0 E min = 511 keV, E max = 500 TeV,   e = 1.6 Supernova properties: E sn = ergs M ej = 8 M ☼ Initial ejecta density profile: constant density core +  r -9 envelope ISM properties: Constant density n = 0.1 cm -3 Energy Number per Unit Energy E min E max -e-e

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era6 Model Output ISM Shocked Ejecta & ISM Unshocked Ejecta Pulsar + Termination Shock Radio Mid-IR Optical / Near-IR Soft X-ray Hard X-ray TeV  -ray GeV  -ray

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era7 Example: Crab Nebula R pwn Termination Shock (Figure 1; Volpi et al. 2008) Pulsar Properties fully determined by age, radio timing observations Pulsar Wind Magnetization at termination shock Minimum and Maximum Energy, Spectrum of Injected Electrons Supernova Explosion Mass and initial kinetic energy of ejecta ISM Density Dynamical Properties PWN Radius Expansion Velocity Termination Shock Radius Radiative Properties Radio Luminosity and Spectral Index X-ray Luminosity and Spectral Index

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era8 Best Fit: Single Power-law Injection Spectrum QuantityObservedPredicted R pwn pc1.3 pc v pwn 1125 –1500 km/s1570 km/s Termination Shock Radius 0.14 pc0.12 pc Radio Luminosity1.8×10 35 ergs/s1.76×10 35 ergs/s Radio Spectral Index X-ray Luminosity 1.3×10 37 ergs/s1.0×10 37 erg X-ray Photon Index 2.1 (1.8 – 3)2.26

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era9 Best Fit: Single Power-law Injection Spectrum Best-fit parameters from MCMC fit Pulsar Wind Properties Magnetization  B = Electron Injection Energy 60 GeV – 600 TeV Injection Power Law index 2.5 ± 0.2 Supernova Explosion Ejecta Mass = 8 ± 1 M ☼ Initial KE = ×10 51 ergs Low density (n < 1 cm -3 ) environment

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era10 Crab Nebula: Maxwellian + Power- Law Injection Spectrum QuantityObservedPredicted R pwn pc1.3 pc v pwn 1125 –1500 km/s1600 km/s Termination Shock Radius 0.14 pc0.12 pc Radio Luminosity1.8×10 35 ergs/s1.83×10 35 ergs/s Radio Spectral Index X-ray Luminosity 1.3×10 37 ergs/s1.4×10 37 erg X-ray Photon Index 2.1 (1.8 – 3)2.2

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era11 Crab Nebula: Maxwellian + Power- Law Injection Spectrum Pulsar Wind Properties Magnetization  B =0.015 Power Law: 96% Ė Injection Energy 50 GeV – 1500 TeV Injection Index 2.4 Maxwellian: 4% Ė kT = 1.8 keV (  = 3500) Supernova Explosion Ejecta Mass = 8 M ☼ Initial KE = ergs ISM n = 0.01 cm -3 Problems: Not most realistic injection spectrum MCMC fit in progress Will also try broken power-law and PL+PL injection spectrum PRELIMINARY!

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era12 Future Directions Apply model to other systems New pulsar, PWN, SNR discoveries by new and existing facilities help considerably Distinguish between injection scenarios Better incorporate results form multi-D simulations Magnetic field structure Growth and effect of instabilities

Thank you! 2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era13

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era14 Evolutionary Model for a Pulsar Wind Nebula Inside a Supernova Remnant Homogeneous ISM, PWN 1D problem Dynamical evolution of PWN determined by dynamics of swept-up material Force result of pressure difference between PWN and SNR Momentum conserved PWN’s radiative losses dominated by synchrotron, IC scattering off CMB (Figure 6; Gelfand et al. 2007) Pulsar Wind Nebula 4πR pwn 2 P pwn 4πR pwn 2 P snr (R pwn ) Supernova Remnant (Gelfand et al. 2009, ApJ submitted)

2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era15 Importance of Injection Spectrum Single Power Law unlikely to be correct Two component models: Broken Power-law Maxwellian + Power-law Two power-laws? Very different spectral and dynamical evolution (Gelfand et al., in prep.) PWN Radius SNR Radius