Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.

Slides:



Advertisements
Similar presentations
Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Advertisements

Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
Recent developments in the theory of Pulsar Wind Nebulae (Plerions) Yves Gallant LPTA, Université Montpellier II (relativistic) magneto-hydrodynamics of.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
1 The Multi-Messenger Approach to Unidentified Gamma-Ray Sources Morphological and spectral studies of the shell-type supernova remnants RX J
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
The Evolution & Structure of Pulsar Wind Nebulae Gaensler, B. M., & Slane P.O. ARA&A, 2006, 44:17.
Challenges of Relativistic Jets - Cracow (June 2006) Patrick Slane Pulsar Winds and Jets Pat Slane (Harvard-Smithsonian Center for Astrophysics)
PARTICLE ACCELERATION AND RADIATION IN PULSAR WIND NEBULAE
X-ray polarisation: Science
Andrea Caliandro 1 Andrea Caliandro (INFN - Bari) on behalf the FERMI-LAT collaboration PSR J : the youngest gamma-ray pulsar in the Galaxy?
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Magnetic-field production by cosmic rays drifting upstream of SNR shocks Martin Pohl, ISU with Tom Stroman, ISU, Jacek Niemiec, PAN.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
World Cup of VHE Gamma Rays J-Dog, for the SNR/PWN Pack.
Three types of PWN for IBIS/ISGRI: Seen by IBIS - some discussed here ~ 10 (16%) Pulsar seen in radio but not seen by IBIS ~ 25 (42%) No radio pulsar.
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Outline: Introduction into the problem Status of the identifications Summary Identification of Very high energy gamma-ray sources.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
Supernova remnants and pulsars Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences (中国科学院高能物理研究所)
“GRAND UNIFICATION” in Neutron Stars Victoria Kaspi McGill University Montreal, Canada.
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
2009 Fermi Symposium, Washington, DC Patrick Slane (CfA) Supernova Remnants and Pulsar Wind Nebulae in the Fermi Era Collaborators: D. Castro S. Funk Y.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Particle acceleration in Supernova Remnants from X-ray observations Anne Decourchelle Service d’Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Harvard-Smithsonian Center for Astrophysics Patrick Slane Pulsar Wind Nebulae.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
COSPAR 2008, Montreal, 18 July Patrick Slane (CfA) Pulsar Wind Nebulae Observations of.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Heidelberg 2008 Patrick Slane (CfA) Pulsar Wind Nebulae.
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Boston 2009 Patrick Slane (CfA) SNRs and PWNe in the Chandra Era Observations of Pulsar Bowshock Nebulae Collaborators: B. M. Gaensler T. Temim J. D. Gelfand.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
PULSAR WINDS AND NEBULAE Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini, Luca Del Zanna, Delia.
SNRs: (& PWNe, SBs, …) Future Science Objectives and Instrument requirements Terri Brandt NASA / Goddard Fermi Symposium GammaSIG Session 13 Nov 2015.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
Observation of Pulsars and Plerions with MAGIC
磁場散逸を考慮したパルサー星雲の閉じ込めについて
Relativistic outflows and GLAST
A large XMM-Newton project on SN 1006
A large XMM-Newton project on SN 1006
Modelling of non-thermal radiation from pulsar wind nebulae
XMM-Newton Observation of the composite SNR G0. 9+0
超新星遗迹 的XTP 观测模拟 南京大学 陈阳、周平、张潇.
SNR 的XTP 观测模拟 南京大学 陈阳、周平、张潇.
Presentation transcript:

Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008

Outline Observing Pulsar Wind Nebulae (PWNe) with LOFAR  General theoretical model of PWNe  Observational properties of PWNe  Observing PWNe with LOFAR Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008

Pulsar Wind Nebulae (PWNe): < 10% of “spin-down” energy converted into pulsations Majority is released as a pulsar wind The wind continuously injects high-energy electrons/positrons and magnetic field at the centre of an expanding supernova remnant producing a synchrotron nebula In general, PWNe are found around the youngest and/or most energetic pulsars, Wind persists beyond point where nebula is visible Not just young pulsars: also high Edot, or strong wind confinement (high-velocity pulsars) ~ 50 PWNe known a.k.a. “Plerions” Chandra time-lapse view of Crab PWN

From Gaensler & Slane (2006) Schematic PWN PWN: Synchrotron-emitting bubble of energetic particles at the center of an expanding supernova remnant Wind is not isotropic: equatorial and polar outflows Crab is in many ways the prototype Also bow-shock nebulae (high-velocity pulsars) and wind shocks in compact binaries (young pulsar case)

Observational Characteristics Most PWNe only observed at cm radio and 1-10 keV X-rays Decreasing size of nebula going from radio to X-rays General radio properties: - - radio-emitting e-/e+ have very - long synchrotron lifetimes - amorphous (not shell-like or torii) - filaments and other structures - high (>10%) fractional linear - polarization - flat, non-thermal, power-law - spectrum (alpha = ) - need for spectral break between - radio and X-rays Crab Nebula From Gaensler & Slane (2006)

Astrophysics of PWNe  Pulsar birth properties (link to progenitor properties?)  Understanding the P-Pdot diagram (i.e. pulsar energetics and magnetic fields)  Relativistic flows/shocks (can resolve nebula)  Particle acceleration and interaction with ISM  Strong link with Galactic population of rare GeV and TeV sources

PWN with LOFAR Detect SNR shells around known PWNe Roughly half of the ~50 known PWNe are “naked” e.g. the elusive Crab SNR shell (crab supernova blast wave hasn’t interacted with enough surrounding gas yet?) Provide information on the composition and density profile of the material that the nebula is expanding into (relation between environment and morphology) - G Roberts et al. 2002

PWN with LOFAR Where does the radio spectrum turn over? Flat spectrum in the radio with one or several spectral breaks necessary to connect with the X-rays At what low freq does this turn over? (does emission become self- absorbed?) PWNe will be dim, LOFAR’s huge collecting area will be critical LOFAR

PWN with LOFAR Morphology and Extent Radio-emitting electrons have very long synchrotron lifetimes, trace energetic history of the pulsar Radio filaments and other features marking regions of instability LOFAR (long baselines incl.) will have similar (arcsecond) resolution to Chandra Compare X-ray/radio morph. Larger/smaller extent at low freq.? G Dubner et al G Roberts et al Soft X-ray Hard X-ray Radio

PWN with LOFAR Spatially Resolved Spectroscopy and Polarimetry Electron cooling as one moves away from pulsar Spectral steepening observed in X-rays (also in radio?) Polarimetry (not yet possible in X-rays) to trace magnetic structure far out in the nebula Relate to pulsar geometry and proper motion Vela - Dodson et al Direction of proper motion and spin axis

PWN with LOFAR Pulsar Winds in Binary Systems Pulsar wind can be strongly confined near the pulsar Probe the wind at very small distance from the pulsar Double pulsar PSR J (within light cylinder) Black-widow pulsars (PSR B ) Be-star companions (PSR B , LSI +61 o 303?) LSI +61 o 303 Dhawan et al. 2006

The TeV Sky in 2008 figures courtesy Jim Hinton VERITAS (“northern HESS”) also coming online Target Galactic TeV sources PWN with LOFAR

Summary PWN observations with LOFAR Find SNR shells around “naked” PWNe Map low-frequency spectrum and cut-off Morphology and extent Spatially resolved spectroscopy and polarimetry Find new PWNe in binary systems or associated with Galactic TeV sources Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008