4: Network Layer4a-1 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router.

Slides:



Advertisements
Similar presentations
Discussion Monday ( ). ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier header checksum time to live.
Advertisements

4 IP Address (IPv4)  A unique 32-bit number  Identifies an interface (on a host, on a router, …)  Represented in dotted-quad notation
8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
Introduction 1-1 1DT066 Distributed Information System Chapter 4 Network Layer.
Announcement r Recitation tomorrow on Project 2 r Midterm Survey at the end of this class.
Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Network Layer4-1 Computer Networking (Datakom) Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing.
The Network Layer Chapter 5. The IP Protocol The IPv4 (Internet Protocol) header.
Announcement r Project 2 due Fri. midnight r Homework 3 out m Due 2/29 Sun. r Advertisement for my CS395/495 course next quarter: Computer Network Security:
Chapter 5 The Network Layer.
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 1 ECSE-4670: Computer Communication Networks (CCN) Network Layer Shivkumar.
1 Announcement r CTEC code for TA CS 340 Lin Code: 322.
Network Layer Overview and IP
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
IP Addressing: introduction
1 Lecture 11: The Network Layer Slides adapted from: Congestion slides for Computer Networks: A Systems Approach (Peterson and Davis) Chapter 3 slides.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
CSE452:Computer Networks
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
RSC Part II: Network Layer 3. IP addressing Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the.
Computer Networks The Network Layer
4: Network Layer4a-1 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time.
Datagram Networks: Internet Protocol (IPv4)
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
12 – IP, NAT, ICMP, IPv6 Network Layer.
4: Network Layer4a-1 IP addresses: how to get one? Hosts (host portion): r hard-coded by system admin in a file r DHCP: Dynamic Host Configuration Protocol:
1DT066 Distributed Information System Chapter 4 Network Layer.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
4: Network Layer4a-1 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m.
Network Layer4-1 Subnets How many?
1 Chapter 4: Network Layer r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Hierarchical routing.
1 Network Layer Lecture 15 Imran Ahmed University of Management & Technology.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
The Internet Network layer
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Wide Area Networks and Internet CT1403 Lecture3: Internet Network Layer 1.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
IP Fragmentation. Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side,
1 COMP 431 Internet Services & Protocols The IP Internet Protocol Jasleen Kaur April 21, 2016.
IP Internet Protocol. IP TCP UDP ICMPIGMP ARP PPP Ethernet.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Introduction to Networks
12 – IP, NAT, ICMP, IPv6 Network Layer.
Chapter 4: Network Layer
Computer Communication Networks
Chapter 4: Network Layer
Chapter 4: Network Layer
CS 1652 Jack Lange University of Pittsburgh
CS 457 – Lecture 10 Internetworking and IP
Wide Area Networks and Internet CT1403
Overview The Internet (IP) Protocol Datagram format IP fragmentation
Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April Network Layer.
Network Layer: Control/data plane, addressing, routers
ECSE-4670: Computer Communication Networks (CCN)
32 bit destination IP address
Presentation transcript:

4: Network Layer4a-1 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router and physical link m routers typically have multiple interfaces m host may have multiple interfaces m IP addresses associated with interface, not host, router =

4: Network Layer4a-2 IP Addressing r IP address: m network part (high order bits) m host part (low order bits) r What’s a network ? ( from IP address perspective) m device interfaces with same network part of IP address m can physically reach each other without intervening router network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address) LAN

4: Network Layer4a-3 IP Addressing How to find the networks? r Detach each interface from router, host r create “islands of isolated networks” Interconnected system consisting of six networks

4: Network Layer4a-4 IP Addresses 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to to to bits given notion of “network”, let’s re-examine IP addresses: “class-full” addressing:

4: Network Layer4a-5 IP addressing: CIDR r classfull addressing: m inefficient use of address space, address space exhaustion m e.g., class B net allocated enough addresses for 65K hosts, even if only 2K hosts in that network r CIDR: Classless InterDomain Routing m network portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in network portion of address network part host part /23

4: Network Layer4a-6 IP addresses: how to get one? Hosts (host portion): r hard-coded by system admin in a file r DHCP: Dynamic Host Configuration Protocol: dynamically get address: “plug-and-play” m host broadcasts “DHCP discover” msg m DHCP server responds with “DHCP offer” msg m host requests IP address: “DHCP request” msg m DHCP server sends address: “DHCP ack” msg

4: Network Layer4a-7 IP addresses: how to get one? Network (network portion): r get allocated portion of ISP’s address space: ISP's block /20 Organization /23 Organization /23 Organization /23... ….. …. …. Organization /23

4: Network Layer4a-8 Hierarchical addressing: route aggregation “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16” /23 Organization Hierarchical addressing allows efficient advertisement of routing information:

4: Network Layer4a-9 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16 or /23” /23 Organization

4: Network Layer4a-10 IP addressing: the last word... Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes

4: Network Layer4a-11 Getting a datagram from source to dest. IP datagram: A B E misc fields source IP addr dest IP addr data r datagram remains unchanged, as it travels source to destination r addr fields of interest here Dest. Net. next router Nhops routing table in A

4: Network Layer4a-12 Getting a datagram from source to dest A B E Starting at A, given IP datagram addressed to B: r look up net. address of B r find B is on same net. as A r link layer will send datagram directly to B inside link-layer frame m B and A are directly connected Dest. Net. next router Nhops misc fields data

4: Network Layer4a-13 Getting a datagram from source to dest A B E Dest. Net. next router Nhops Starting at A, dest. E: r look up network address of E r E on different network m A, E not directly attached r routing table: next hop router to E is r link layer sends datagram to router inside link- layer frame r datagram arrives at r continued….. misc fields data

4: Network Layer4a-14 Getting a datagram from source to dest A B E Arriving at , destined for r look up network address of E r E on same network as router’s interface m router, E directly attached r link layer sends datagram to inside link-layer frame via interface r datagram arrives at !!! (hooray!) misc fields data network router Nhops interface Dest. next

4: Network Layer4a-15 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time to live 32 bit source IP address IP protocol version number header length (32 bit words) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, pecify list of routers to visit.

4: Network Layer4a-16 IP Fragmentation & Reassembly r network links have MTU (max.transfer size) - largest possible link-level frame. m different link types, different MTUs r large IP datagram divided (“fragmented”) within net m one datagram becomes several datagrams m “reassembled” only at final destination m IP header bits used to identify, order related fragments fragmentation: in: one large datagram out: 3 smaller datagrams reassembly

4: Network Layer4a-17 IP Fragmentation and Reassembly ID =x offset =0 fragflag =0 length =4000 ID =x offset =0 fragflag =1 length =1500 ID =x offset =1480 fragflag =1 length =1500 ID =x offset =2960 fragflag =0 length =1040 One large datagram becomes several smaller datagrams