14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere.

Slides:



Advertisements
Similar presentations
A coherent subnanosecond single electron source
Advertisements

PHYSIQUE MESOSCOPIQUE
Superconducting properties of carbon nanotubes
Josepson Current in Four-Terminal Superconductor/Exciton- Condensate/Superconductor System S. Peotta, M. Gibertini, F. Dolcini, F. Taddei, M. Polini, L.
AC CONDUCTANCE AND NON-SYMMETRIZED NOISE AT FINITE FREQUENCY IN QUANTUM WIRE AND CARBON NANOTUBE Adeline CRÉPIEUX 1, Cristina BENA 2,3 and Inès SAFI 2.
QUANTUM DYNAMICS OF A COOPER PAIR TRANSITOR COUPLED TO A DC-SQUID Aurélien Fay under the supervision of : Olivier BUISSON - Wiebke GUICHARD - Laurent LEVY.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
1 Ferromagnetic Josephson Junction and Spin Wave Resonance Nagoya University on September 5,2009 Sadamichi Maekawa (IMR, Tohoku University) Co-workers:
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
Full counting statistics of incoherent multiple Andreev reflection Peter Samuelsson, Lund University, Sweden Sebastian Pilgram, ETH Zurich, Switzerland.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Josephson Junctions, What are they?
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Optical study of Spintronics in III-V semiconductors
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Thierry Martin Centre de Physique Théorique & Université de la Méditerranée Detection of finite frequency current moments with a dissipative resonant circuit.
Submicron structures 26 th January 2004 msc Condensed Matter Physics Photolithography to ~1 μm Used for... Spin injection Flux line dynamics Josephson.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Physical Phenomena for TeraHertz Electronic Devices
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
By: Adam Krause 4/17/07 Physics 672
SQUIDs (Superconducting QUantum Interference Devices)
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
(=“P B ”) (=“P C ”) (=“P B or C ”). NEITHER B NOR C “SELECTED”…. BY EACH INDIVIDUAL ATOM !
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
PICO-group SAB presentation, Nov 9, 2006, Jukka Pekola Dr. Alexander Savin senior scientist Dr. Matthias Meschke research scientist Dr. Juha Vartiainen.
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
Spin Readout with Superconducting Circuits April 27 th, 2011 N. Antler R. Vijay, E. Levenson-Falk, I. Siddiqi.
Electron Transport in Carbon Nanotubes
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Entanglement for two qubits interacting with a thermal field Mikhail Mastyugin The XXII International Workshop High Energy Physics and Quantum Field Theory.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Example: Magnetic field control of the conducting and orbital phases of layered ruthenates, J. Karpus et al., Phys. Rev. Lett. 93, (2004)  Used.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Quantum transport in one and two dimensional superconductors Andrey Rogachev, University of Utah, DMR Superconductor-Insulator Transition in 1D.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Brookhaven Science Associates U.S. Department of Energy Chi-Chang Kao National Synchrotron Light Source Brookhaven National Laboratory Recent Developments.
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
Flat Band Nanostructures Vito Scarola
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Modeling of Quantum Noise with Electron-Phonon Interactions
BCS THEORY BCS theory is the first microscopic theory of superconductivity since its discovery in It explains, The interaction of phonons and electrons.
Electronic structure of topological insulators and superconductors
Topological Phase transitions and Topological phases of matter
Experimental Evidences on Spin-Charge Separation
On the collapses and revivals in the Rabi Hamiltonian
Optimal Interesting Quantum Gates with Quantum Dot Qubits David DiVincenzo Spinqubits summer school, Konstanz Hall Effect Gyrators and Circulators.
Full Current Statistics in Multiterminal Mesoscopic Conductors
Chapter 5 - Phonons II: Quantum Mechanics of Lattice Vibrations
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere CR CNRS Thierry Martin Prof. U2‏ Jérôme Rech CR CNRS

14 février 2011Evaluation AERES2 Equipe de Nanophysique – Groupe 2 Etudiants en thèse D. Chevallier (soutenance 09/2011)‏ R. Zamoum débutée en 2010‏ C. Wahl débutée en 2011‏

14 février 2011Evaluation AERES3 Electronic transport in mesoscopic and nanoscopic devices Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …) Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)‏ 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)‏ High frequency noise, theory of noise measurement Time-dependent problems – time-resolved single electron excitations Theory of Quantum Hall effect (impact of the atomic lattice, anomalous and spin Hall effects, …)‏

14 février 2011Evaluation AERES4 Electronic transport in mesoscopic and nanoscopic devices Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …) Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)‏ 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)‏ High frequency noise, theory of noise measurement Time-dependent problems – time-resolved single electron excitations Theory of Quantum Hall effect (impact of the atomic lattice, anomalous and spin Hall effects, …)‏

14 février 2011Evaluation AERES5 Electronic transport in mesoscopic and nanoscopic devices Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …) Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)‏ 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)‏ High frequency noise, theory of noise measurement Time-dependent problems – time-resolved single electron excitations Theory of Quantum Hall effect (impact of the atomic lattice, anomalous and spin Hall effects, …)‏

14 février 2011Evaluation AERES6 Electronic transport in mesoscopic and nanoscopic devices Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …) Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)‏ 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)‏ High frequency noise, theory of noise measurement Time-dependent problems – time-resolved single electron excitations Theory of Quantum Hall effect (impact of the atomic lattice, anomalous and spin Hall effects, …)‏

14 février 2011Evaluation AERES7 Electronic transport in mesoscopic and nanoscopic devices Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …) Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)‏ 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)‏ High frequency noise, theory of noise measurement Time-dependent problems – time-resolved single electron excitations Theory of Quantum Hall effect (impact of the atomic lattice, anomalous and spin Hall effects, …)‏

14 février 2011Evaluation AERES8 Electronic transport in mesoscopic and nanoscopic devices Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …) Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)‏ 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)‏ High frequency noise, theory of noise measurement Time-dependent problems – time-resolved single electron excitations Theory of Quantum Hall effect (impact of the atomic lattice, anomalous and spin Hall effects, …)‏

14 février 2011Evaluation AERES9 Projets en cours – possibilités de séminaires, stages, thèses… Emission et manipulation d’électrons uniques dans des états de bords : Optique quantique électronique (ANR 1 shot, coll. LPA ENS Paris, ENS Lyon)‏ Effets thermo-électriques dépendant du temps (coll. F. Michelini, IM2NP) Etude du splitter à paire de Cooper”,et du courant de quartets (paires de paires de Cooper) (coll. R. Melin Grenoble, T. Kontos Paris)‏

14 février 2011Evaluation AERES10 Josephson effect through an isotropic magnetic molecule Phase diagram of the Josephson junction (0 or  state). The exchange interaction J has a deep impact on the Joseph- son current M. Lee, T. Jonckheere and T. Martin, Phys. Rev. Lett. 101, (2008)‏

14 février 2011Evaluation AERES11 Screening in a Luttinger liquid coupled to a STM tip Study of the impact of screening on the transport between a STM tip and a Luttinger liquid Calculation of the spectral properties and of transport properties (screening reduces the current). M. Guigou, T. Martin and A. Crépieux, Phys. Rev. B 80, (2009)‏ and Phys. Rev. B 80, (2009)‏

14 février 2011Evaluation AERES12 Dynamic response of the quantum RC circuit with strong electronic interactions Systematic study of the effect of strong electronic interaction on the dynamical behavior of the quantum RC circuit, using a Luttinger liquid model. Relaxation resistance is universal even for strong Coulomb blockade, but strong interactions in the leads induce a quantum phase transition to an incoherent regime Y. Hamamoto, T. Jonckheere, T. Kato and T. Martin, Phys. Rev. B 81, (2010) (from LPA Physique mésoscopique group)