Objectives: 1.Be able to determine where a function is concave upward or concave downward with the use of calculus. 2.Be able to apply the second derivative.

Slides:



Advertisements
Similar presentations
AP Calculus Section 3.4 Concavity and the Second Derivative Test
Advertisements

Section 3.4 – Concavity and the Second Derivative Test
Concavity and the Second Derivative Test
1 Concavity and the Second Derivative Test Section 3.4.
Concavity & the second derivative test (3.4) December 4th, 2012.
Copyright © Cengage Learning. All rights reserved.
Aim: Concavity & 2 nd Derivative Course: Calculus Do Now: Aim: The Scoop, the lump and the Second Derivative. Find the critical points for f(x) = sinxcosx;
Extremum & Inflection Finding and Confirming the Points of Extremum & Inflection.
Miss Battaglia AP Calculus AB/BC.  Let f be differentiable on an open interval I. The graph of f is concave upward on I if f’ is increasing on the interval.
Sec 3.4: Concavity and the Second Derivative Test
Inflection Points. Objectives Students will be able to Determine the intervals where a function is concave up and the intervals where a function is concave.
3.4 Concavity and the Second Derivative Test. In the past, one of the important uses of derivatives was as an aid in curve sketching. We usually use a.
Concavity and the Second- Derivative Test. 1. Determine the open intervals on which the graph of the function is concave upward or concave downward (similar.
The Shape of the Graph 3.3. Definition: Increasing Functions, Decreasing Functions Let f be a function defined on an interval I. Then, 1.f increases on.
Increasing / Decreasing Test
4.3 How Derivatives Affect the Shape of a Graph. Facts If f ’( x ) > 0 on an interval ( a,b ), then f (x) is increasing on ( a,b ). If f ’( x ) < 0 on.
In this section, we will investigate some graphical relationships between a function and its second derivative.
CHAPTER Continuity Derivatives and the Shapes of Curves.
Increasing/ Decreasing
In the past, one of the important uses of derivatives was as an aid in curve sketching. We usually use a calculator of computer to draw complicated graphs,
CONCAVITY AND SECOND DERIVATIVE RIZZI – CALC BC. WARM UP Given derivative graph below, find a. intervals where the original function is increasing b.
Ch. 5 – Applications of Derivatives
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Section 5.3 Connecting f′ and f″ with the graph of f Applications of Derivatives Chapter 5.
Extremum & Inflection. Finding and Confirming the Points of Extremum & Inflection.
Calculus 3.1: Derivatives of Inverse Functions
Determine where a function is increasing or decreasing When determining if a graph is increasing or decreasing we always start from left and use only the.
CHAPTER 3 SECTION 3.4 CONCAVITY AND THE SECOND DERIVATIVE TEST.
§3.4 Concavity Concave Up Concave Down Inflection Points Concavity Changes Concave Up Concave Down.
How derivatives affect the shape of a graph ( Section 4.3) Alex Karassev.
4.3 – Derivatives and the shapes of curves
10/3/2016 Perkins AP Calculus AB Day 5 Section 3.4.
Increasing, Decreasing, Constant
Ch. 5 – Applications of Derivatives
Learning Target: I will determine if a function is increasing or decreasing and find extrema using the first derivative. Section 3: Increasing & Decreasing.
Relative Extrema and More Analysis of Functions
3.3: Increasing/Decreasing Functions and the First Derivative Test
3.3 Increasing and Decreasing Functions and the First Derivative Test
4.3 Using Derivatives for Curve Sketching.
Extreme Values of Functions
Review Problems Sections 3-1 to 3-4
Concavity.
Relationship between First Derivative, Second Derivative and the Shape of a Graph 3.3.
Applications of the Derivative
4.3 – Derivatives and the shapes of curves
Concavity and the Second Derivative Test
Second Derivative Test
1 2 Sec 4.3: Concavity and the Second Derivative Test
Application of Derivative in Analyzing the Properties of Functions
Sec 3.4: Concavity and the Second Derivative Test
3.4: Concavity and the Second Derivative Test
Self Assessment 1. Find the absolute extrema of the function
For each table, decide if y’is positive or negative and if y’’ is positive or negative
Concave Upward, Concave Downward
4.3 1st & 2nd Derivative Tests
5.2 Section 5.1 – Increasing and Decreasing Functions
Increasing, Decreasing, Constant
Rolle's Theorem Objectives:
4.3 Connecting f’ and f’’ with the graph of f
For each table, decide if y’is positive or negative and if y’’ is positive or negative
Warm Up Cinco Chapter 3.4 Concavity and the Second Derivative Test
Derivatives and Graphing
Section 3.4 – Concavity and the Second Derivative Test
1. Be able to apply The Mean Value Theorem to various functions.
Copyright © Cengage Learning. All rights reserved.
Concavity & the second derivative test (3.4)
Concavity & the 2nd Derivative Test
Unit 4: Applications of Derivatives
Math 1304 Calculus I 4.03 – Curve Shape.
Relationship between First Derivative, Second Derivative and the Shape of a Graph 3.3.
Presentation transcript:

Objectives: 1.Be able to determine where a function is concave upward or concave downward with the use of calculus. 2.Be able to apply the second derivative test to find the relative extrema of a function. Critical Vocabulary: Concave Upward, Concave Downward Warm Up: Find the 2 nd derivative of each function

Let f be differentiable on a open interval I. The graph of f is concave upward on I if f’(x) is increasing on the interval and concave downward on I if f’(x) is decreasing on the interval.

(-∞,0) (0, ∞) This is called a point of inflection. Concavity changes at these points. (0, 2) (-∞, 0) (2, ∞)

Let f be a function whose second derivative exists on an open interval I. 1. If f’’(x) > 0 for all x in I, then f is Concave Upward in I 2. If f’’(x) < 0 for all x in I, then f is Concave Downward in I

Example 1: Find the open intervals on which the following function is concave upward or concave downward. Interval (-∞, -1)(-1, 1)(1, ∞) Test Valuex = -2x = 0x = 2 Sign of f’’(x) f’’(x) = (+)f’’(x) = (-)f’’(x) = (+) Conclusion Concave UpConcave DownConcave Up x = 1 and x = -1 Concave Up: Concave Down: (-∞, -1) (-1, 1) (1, ∞) These are called points of inflection. Concavity changes at these points.

Example 2: Find the open intervals on which the following function is concave upward or concave downward. Interval (-∞, -2)(-2, 2)(2, ∞) Test Valuex = -3x = 0x = 3 Sign of f’’(x) f’’(x) = (+)f’’(x) = (-)f’’(x) = (+) Conclusion Concave UpConcave DownConcave Up Discontinuity: x = +/-2 Concave Up: Concave Down: (-∞, - 2) (-2, 2) (2, ∞)

Page 342 #1-9 odds (MUST USE CALCULUS!!!!)

Let f be a function such that f’(c) = 0 and the second derivative of f exists on a open interval containing c. 1.If f’’(c) > 0, then f(c) is a relative minimum of f. 2. If f’’(c) < 0, then f(c) is a relative maximum of f. 3. If f’’(c) = 0, then the test fails. In such case, you use the First Derivative Test.

Example 3: Find the relative extrema for f(x) = -3x 5 + 5x 3 using the second derivative test. f’(x) = -15x x 2 Critical Numbers: x = 0, 1, -1 f(0) = 0: (0, 0) f(1) = 2: (1, 2) f(-1) = -2: (-1, -2) f’’(x) = -60x x Point Sign f’’(x) Conclusion (-1, -2)(1, 2)(0, 0) f’’(-1) > 0 Relative Min f’’(1) < 0 Relative Max f’’(0) = 0 Test Fails Inflection Points: x = 0 Inflection

Example 4: Find the relative extrema for using the second derivative test. Critical Numbers: x = 0 f(0) = 1: (0, 1) Point Sign f’’(x) Conclusion (0, 1) f’’(0) > 0 Relative Min Inflection Points: None

Page 342 #11-33 odd, 45, 47 (MUST USE CALCULUS!!!!)