Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.

Slides:



Advertisements
Similar presentations
Quadratic Equations and Problem Solving
Advertisements

Quadratic Functions.
Quadratic and polynomial functions
Quadratic Functions and Equations
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
§ 8.3 Quadratic Functions and Their Graphs.
§ 8.3 Quadratic Functions and Their Graphs. Graphing Quadratic Functions Blitzer, Intermediate Algebra, 5e – Slide #2 Section 8.3 The graph of any quadratic.
Quadratic Equations and Problem Solving
Pre – CalcLesson 2.4 Finding Maximums and Minimums of Polynomial Functions For quadratic functions: f(x) = ax 2 + bx + c To fin d the max. or min. 1 st.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
3.3 Analyzing Graphs of Quadratic Functions
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 16 Quadratic Equations.
Graphing Quadratic Functions
Quadratic Functions A quadratic function is a function with a formula given by the standard form f(x) = ax2+bx+c, where a, b, c, are constants and Some.
Standard 9 Write a quadratic function in vertex form
Maybe we should look at some diagrams.
Rev.S08 MAC 1105 Module 4 Quadratic Functions and Equations.
3 Polynomial and Rational Functions © 2008 Pearson Addison-Wesley. All rights reserved Sections 3.1–3.4.
Chapter 8 Review Quadratic Functions.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Quadratic Functions and Their Graphs
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 1 Chapter 9 Quadratic Equations and Functions.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-5 Quadratic Functions, Graphs, and Models.
§ 8.3 Quadratic Functions and Their Graphs. Blitzer, Intermediate Algebra, 4e – Slide #48 Graphing Quadratic Functions Graphs of Quadratic Functions The.
Graphing Quadratic Functions 2015/16 Digital Lesson.
Copyright © 2011 Pearson Education, Inc. Quadratic Functions and Inequalities Section 3.1 Polynomial and Rational Functions.
Definition of a Polynomial Function in x of degree n.
Section 6 Part 1 Chapter 9. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives More About Parabolas and Their Applications Find.
MTH 209 Week 4 Third.
5.1 – Introduction to Quadratic Functions
Graphing Quadratic Functions Graph quadratic functions of the form f ( x ) = ax 2. 2.Graph quadratic functions of the form f ( x ) = ax 2 + k. 3.Graph.
Copyright © 2014, 2010, 2006 Pearson Education, Inc. 1 Chapter 3 Quadratic Functions and Equations.
1. Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Quadratic Equations CHAPTER 11.1Completing the Square 11.2Solving Quadratic.
Section 3.1 Quadratic Functions; Parabolas Copyright ©2013 Pearson Education, Inc.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Introduction to Factoring Common Factors Factoring by Grouping 6.1.
Copyright © 2007 Pearson Education, Inc. Slide 3-1.
Graphing Quadratic Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Quadratic function Let a, b, and c be.
Sections 11.6 – 11.8 Quadratic Functions and Their Graphs.
Quadratic Functions and Models ♦ ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 1 Equations and Inequalities Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Solving Quadratic Equations Unit Review. Solving Quadratics By Graphing.
Graphing Quadratic Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Quadratic function Let a, b, and c be.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Quadratic Functions and Models ♦ Learn basic concepts about quadratic functions.
Section 3.3 Analyzing Graphs of Quadratic Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Precalculus Chapter 2 Polynomial and Rational Functions.
Quadratic Functions and Models ♦ ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula.
Section 5Chapter 6. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives 2 3 Solving Equations by Factoring Learn and use the zero-factor.
Chapter 9 - Quadratic Functions and Equations
Chapter 9 - Quadratic Functions and Equations
Section 3.3 Analyzing Graphs of Quadratic Functions Copyright ©2013, 2009, 2006, 2005 Pearson Education, Inc.
Copyright © Cengage Learning. All rights reserved. 1.4 Solving Quadratic Equations.
Graphing Quadratic Functions Digital Lesson. 2 Quadratic function Let a, b, and c be real numbers a  0. The function f (x) = ax 2 + bx + c is called.
Identifying Quadratic Functions
Module 4 Quadratic Functions and Equations
2.1- Graphing Quadratic Functions
Quadratic Equations and Problem Solving
Dilrajkumar 06 X;a.
Graphing Quadratic Functions
Graphing Quadratic Functions
Graphing Quadratic Functions
Chapter 8 Quadratic Functions.
Graphing Quadratic Functions
Chapter 8 Quadratic Functions.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Graphing Quadratic Functions
Graphing Quadratic Functions
Graphing Quadratic Functions
Presentation transcript:

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Quadratic Functions and Models ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula. ♦ Graph a quadratic function by hand. ♦ Solve applications and model data. 3.1

Slide 3- 3 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Basic Concepts Recall that a linear function can be written as f(x) = ax + b (or f(x) = mx + b). The formula for a quadratic function is different from that of a linear function because it contains an x 2 term. f(x) = 3x 2 + 3x + 5g(x) = 5  x 2

Slide 3- 4 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Quadratic Function The graph of a quadratic function is a parabola—a U shaped graph that opens either upward or downward. A parabola opens upward if a is positive and opens downward if a is negative. The highest point on a parabola that opens downward and the lowest point on a parabola that opens upward is called the vertex. The vertical line passing through the vertex is called the axis of symmetry. The leading coefficient a controls the width of the parabola. Larger values of |a| result in a narrower parabola, and smaller values of |a| result in a wider parabola.

Slide 3- 5 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Examples of different parabolas

Slide 3- 6 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Use the graph of the quadratic function shown to determine the sign of the leading coefficient, its vertex, and the equation of the axis of symmetry. Solution Leading coefficient: The graph opens downward, so the leading coefficient a is negative. Vertex: The vertex is the highest point on the graph and is located at (1, 3). Axis of symmetry: Vertical line through the vertex with equation x = 1.

Slide 3- 7 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 3- 8 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Write the formula f(x) = x x + 23 in vertex form by completing the square. Solution Given formula Subtract 23 from each side. Let k = 10; add (10/2) 2 = 25. Factor perfect square trinomial. Subtract 2.

Slide 3- 9 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Find the vertex of the graph of symbolically. Support your symbolically. Support your answer graphically and numerically. Solution a = 1/2, b =  4, and c = 8. a = 1/2, b =  4, and c = 8. x-coordinate of vertex: y-coordinate evaluate f(4): The vertex is (4, 0).

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Solution continued Graphically and Numerically axis of symmetry

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Use the vertex formula to write f(x) =  3x 2  3x + 1 in vertex form. Solution 1. Begin by finding 2. Find y. the vertex. The vertex is: Vertex form:

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Graph the quadratic equation g(x) =  3x x  49. Solution The formula is not in vertex form, but we can find the vertex. The y-coordinate of the vertex is: The vertex is at (4,  1). The axis of symmetry is x = 4, and the parabola opens downward because the leading coefficient is negative.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Solution continued Graph: g(x) =  3x x  49 Table of Values xy 2  13 3 44 4 11 5 44 6 vertex

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Applications and Models Example A junior horticulture class decides to enclose a rectangular garden, using a side of the greenhouse as one side of the rectangle. If the class has 32 feet of fence, find the dimensions of the rectangle that give the maximum area for the garden. Solution Let w be the width and L be the length of the rectangle. Because the 32-foot fence does not go along the greenhouse, if follows that W + L + W = 32 or L = 32 – 2W L W

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Solution continued The area of the garden is the length times the width. This is a parabola that opens downward, and by the vertex formula, the maximum area occurs when The corresponding length is L = 32 – 2W = 32 – 2(8) = 16 feet. The dimensions are 8 feet by 16 feet.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example A model rocket is launched with an initial velocity of v o = 150 feet per second and leaves the platform with an initial height of h o = 10 feet. a) Write a formula s(t) that models the height of the rocket after t seconds. b) How high is the rocket after 3 seconds? c) Find the maximum height of the baseball. Support your answer graphically. Solution a)

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Solution continued b) The rocket is 316 feet high after 3 seconds. c) Because a is negative, the vertex is the highest point on the graph, with an t-coordinate of The y-coordinate is: The vertex is at (4.7, 361.6).

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Solution continued Graphical support is shown below.

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Quadratic Equations and Problem Solving ♦ Understand basic concepts about quadratic equations ♦ Use factoring, the square root property, completing the square, and the quadratic formula to solve quadratic equations ♦ Understand the discriminant ♦ Solve problems involving quadratic equations 3.2

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solving Quadratic Equations The are four basic symbolic strategies in which quadratic equations can be solved. Factoring Square root property Completing the square Quadratic formula

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Factoring A common technique used to solve equations that is based on the zero-product property. Example Solution

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example A rescue helicopter hovers 68 feet above a jet ski in distress and drops a life raft. The height in feet of the raft above the water is given by Determine how long it will take for the raft to hit the water after being dropped from the helicopter. Solution (continued on next slide) The raft will hit the water when its height is 0 feet above the water.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Solution continued The life raft will hit about 2.1 seconds after it is dropped.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Completing the Square Completing the square is useful when solving quadratic equations that do not factor easily. If a quadratic equation can be written in the form where k and d are constants, then the equation can be solved using

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Solve 2x 2 + 6x = 7. Solution

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Solve the equation Solution Let a = 2, b =  5, and c =  9.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Use the discriminant to determine the number of solutions to the quadratic equation Solution Since the equation has two real solutions.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Modeling Projectile Motion Example The following table shows the height of a toy rocket launched in the air. a)Use to model the data. b)After how many seconds did the toy rocket strike the ground? Height of a toy rocket t (sec)012 s(t) feet123628

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution continued a)If t = 0, then s(0) = 12, so The value of v o can be found by noting that when t = 2, s(2) = 28. Substituting gives the following result. Thus s(t) =  16t t + 12 models the height of the toy rocket.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution continued b)The rocket strikes the ground when s(t) = 0, or when –16t t + 12 = 0. Using the quadratic formula, where a = 4, b = – 10 and c = – 3 we find that Only the positive solution is possible, so the toy rocket reaches the ground after approximately 2.8 seconds.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example A box is is being constructed by cutting 2 inch squares from the corners of a rectangular sheet of metal that is 10 inches longer than it is wide. If the box has a volume of 238 cubic inches, find the dimensions of the metal sheet. Solution Step 1: Let x be the width and x + 10 be the length. Step 2: Draw a picture. x + 10 x x - 4 x + 6

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution continued Since the height times the width times the length must equal the volume, or 238 cubic inches, the following can be written Step 3: Write the quadratic equation in the form ax 2 + bx + c = 0 and factor.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution continued The dimensions can not be negative, so the width is 11 inches and the length is 10 inches more, or 21 inches. Step 4: After the 2 square inch pieces are cut out, the dimensions of the bottom of the box are 11 – 4 = 7 inches by 21 – 4 = 17 inches. The volume of the box is then, which checks.