Photosynthesis. Photosynthesis - overview 1. The conversion of light energy (from the sun) into chemical energy (stored in sugar & organic molecules.

Slides:



Advertisements
Similar presentations
Photosynthesis/respiration
Advertisements

Photosynthesis.
Photosynthesis. A. Background 1. The conversion of light energy (from the sun) into chemical energy (stored in sugar & organic molecules. 2. Plants, algae.
Photosynthesis: Energy
1. Compare and contrast heterotrophs to autotrophs. 2. Write the balanced equation for photosynthesis. 3. Why is the leaf shaped and structured as it.
Photosynthesis. Photosynthesis: An Overview  Electrons play a primary role in photosynthesis  In eukaryotes, photosynthesis takes place in chloroplasts.
Chapter 10 Photosynthesis
Ch. 10 Diagrams Photosynthesis. (a) Plants (b)Multicellular alga (c)Unicellular protists (d) Cyanobacteria (e)Purple sulfur bacteria 10  m 1  m 40 
Photosynthesis. A. Background 1. The conversion of light energy (from the sun) into chemical energy (stored in sugar & organic molecules. 2. Plants, algae.
PHOTOSYNTHESIS. YOU MUST KNOW… HOW PHOTOSYSTEMS CONVERT SOLAR ENERGY TO CHEMICAL ENERGY HOW LINEAR ELECTRON FLOW IN THE LIGHT REACTIONS RESULTS IN THE.
Photosynthesis Ch 7. Autotrophs Chloroplasts Contain chlorophyll – Green Site of photosynthesis Concentrated in leaves.
Photosynthesis Honors Biology. Overview of Photosynthesis What is Photosynthesis? What is Photosynthesis? 6 CO H 2 O → C 6 H 12 O O 2 6 CO.
Ch. 4 Cellular Energy Production & Harvest. Energy = First law of thermodynamics = energy cannot be created or destroyed. It can be converted to different.
Energy definition= First law of thermodynamics = Energy is lost as heat with each conversion process.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Lecture Slides.
CHAPTER 10.  stomata – pores in lower epidermis of leaf  gas exchange  mesophyll – inner-leaf tissue  most chloroplasts located in these cells  veins.
Photosynthesis (PS) Chapter 10.
PHOTOSYNTHESIS Chapter 10. BASIC VOCABULARY Autotrophs – producers; make their own “food” Heterotrophs – consumers; cannot make own food.
PHOTOSYNTHESIS Chapter 10. PHOTOSYNTHESIS Overview: The Process That Feeds the Biosphere Photosynthesis Is the process that converts light (sun) energy.
MODULE 7: Photosynthesis Module 7: Photosynthesis.
Chp Photosynthesis. LE 10-2 Plants Unicellular protist Multicellular algaeCyanobacteria Purple sulfur bacteria 10 µm 1.5 µm 40 µm.
Autotrophs : self feeders, producers, produce organic molecules from CO 2 ◦ Photoautotrophs: light energy ◦ Chemoautotrophs: oxidize inorganic compounds.
Photosynthesis Conversion of light energy from the sun into stored chemical energy in the form of glucose and other organic molecules.
Photosynthesis Chapter 6. Carbon and Energy Sources Photoautotrophs Carbon source is carbon dioxide Energy source is sunlight Heterotrophs Get carbon.
Photosynthesis Chapter 7 Mader: Biology 8th Ed..
Fig Stages of Photosynthesis 1.Capturing light energy 2.Using this energy to make ATP to split H2O molecules and use (H+) to reduce NADP+ to.
Chapter 10 Photosynthesis.
C HAPTER 10: P HOTOSYNTHESIS. P HOTOSYNTHESIS Energy transfer from solar energy into chemical energy Performed by “photoautotrophs,” who use the energy.
Photosynthesis: Capturing Energy Chapter 8. Light Composed of photons – packets of energy Visible light is a small part of the electromagnetic spectrum.
Photosynthesis Ch 7. Autotrophs Chloroplasts Contain chlorophyll – Green Site of photosynthesis Concentrated in leaves.
© 2014 Pearson Education, Inc. Chapter Opener 7-1.
Photosynthesis Chapter 10. Plants – autotrophs (provide own food given certain circumstances) Need CO2, other inorganic (non- carbon based) materials.
 Plants and other autotrophs are producers of biosphere  Photoautotrophs: use light E to make organic molecules  Heterotrophs: consume organic molecules.
Photosynthesis Chapter 8. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 +
Chapter 5 Photosynthesis
Figure
Ch. 10 part 1 The light reaction. I. Autotrophs- Organisms that make their own food (convert light energy to chemical energy) I. Autotrophs- Organisms.
Chapter 10 Photosynthesis. main idea: making glucose autotroph – self-feeder; -organism which makes its own food a) phototrophic – uses light b) chemotrophic.
Photosynthesis The original Green Technology.. Photosynthesis in nature Autotrophs: biotic producers –obtain organic food without eating other organisms.
Chapter 10: Photosynthesis Photosynthesis transforms solar light energy into chemical bond energy stored as sugar.
Where It Starts – Photosynthesis Chapter 7 Part 1 Let’s start with Mr. Anderson….
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Excitation of Chlorophyll by Light When a pigment absorbs light, it goes from.
Problem of the Day: What does the graph below say about non- germinating corn seed vs. germinating corn seed? Explain this result.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Photosynthesis.
Chapter 10~ Photosynthesis. Photosynthesis in nature Autotrophs: biotic producers; can be photoautotrophs or chemoautotrophs; Heterotrophs: biotic consumers;
Photosynthesis Ch 10 AP Biology Converting Solar Energy to Chemical Energy 6 CO H 2 O + Light energy  C 6 H 12 O O H 2 O.
Photosynthesis. Review  Autotrophs – “self-feeders”  producers  Heterotrophs – “other-feeders”  Consumers  Photosynthesis – how plants convert.
Photosynthesis Chapter 10 Part 2. The Light Reactions Driven by visible light – light is electromagnetic radiation – only small fraction of radiation.
Chapter 10 Photosynthesis
Photosynthesis.
Photosynthesis Chapter 7.
Photosynthesis Chapter 10.
Photosynthesis.
AP Bio Photosynthesis Review
Photosynthesis.
Photosynthesis.
Photosynthesis Chapter 8.
Chapter 10 Photosynthesis
Photosynthesis Chapter 10.
Quiz over cellular respiration
PHOTOSYNTHESIS.
Cyclic Electron Flow Cyclic electron flow uses only photosystem I and produces ATP, but not NADPH Cyclic electron flow generates surplus ATP, satisfying.
6H2O + 6CO > C6H12O6+ 6O2 Photosynthesis The process by which plants, some bacteria, and some protists use the energy from sunlight to produce.
LE 10-3 Leaf cross section Vein Mesophyll Stomata CO2 O2
Fig Figure 10.1 How can sunlight, seen here as a spectrum of colors in a rainbow, power the synthesis of organic substances?
Photosynthesis The original Green Technology.
(a) Excitation of isolated chlorophyll molecule (b) Fluorescence
Presentation transcript:

Photosynthesis

Photosynthesis - overview 1. The conversion of light energy (from the sun) into chemical energy (stored in sugar & organic molecules. 2. Plants, algae (protists), cyanobacteria, phytoplankton 3. Plants are primary producers – produce organic molecules from CO 2 & H 2 O They are the bottom of the terrestrial food chain All complex organisms on land depend on plants (ultimately) for food & O 2.

Photosynthesis occurs In the chloroplast Fig 10.3

Chloroplast anatomy 1. 2 membranes (inner & outer) 2. Thylakoid membranes – site of the light reactions 3. Stroma – site of the Calvin cycle, contains rubisco

Photosynthesis - overview 1. 6CO 2 + 6H 2 0 C 6 H 12 O 6 + 6O 2 2. O 2 is released as a by-product from the splitting of water 3. 2 interdependent pathways: A. Light reactions – chlorophyll absorbs light energy to create high energy molecules: ATP & NADPH + H +. These are used to drive: B. Calvin cycle – carbon fixation

Fig 10.5

Light 1. What is light?? = electromagnetic energy (radiation) 2. Consists of groups of particles called photons 3. Travels in waves 4. Wavelength = distance between peaks in wave 5. Only visible light drives PSN: 380 to 750nm

Fig 10.6

Pigments 1. Molecular substances that absorb visible light. 2. Chlorophyll a – main PSN pigment, absorbs red & blue light (reflects green) to initiate the light reactions 3. Accessory pigments – absorb light energy & transfer it to chlorophyll a Chlorophyll b, carotenoids

Fig 10.9

Photosystems 1. The functional units of chlorophyll & accessory pigments that work together to absorb a photon of light. “Kicks” electrons to an excited state (high energy) 2. 2 main components: A. Light-harvesting complex – accessory pigments absorb light, pass their excited electrons to B. Reaction center complex – a pair of chlorophyll a molecules. Passes the excited electrons to a primary electron acceptor.

Fig 10.12

Fig 10.11

Two types of photosystems in the thylakoid membranes: 1. Photosystem I (P700) – absorbs 700nm wavelengths best (far-red) 2. Photosystem II (P680) – absorbs 680nm wavelengths best (red)

Flow of electrons from the photosystems through various proteins in the thylakoid drives the synthesis of NADPH + H + & ATP The Light Reactions

1. Non-cyclic electron flow 1. PS II absorbs light, splitting water into H+, electrons, and O Further light absorption by PS II kicks the electrons up to an excited state. 3. Excited electrons are pass from PS II to PS I along an electron transport chain (PSII  Pq  cytochrome complex  Pc  PS I). Energy released at every step used to drive ATP synthesis 4. When electron reaches PS I, light absorption kicks it up to excited state again. 5. Excited electron is passed to Fd to NADP+ - the terminal electron acceptor. Reduced to NADPH

Fig 10.14

Fig 10.13

Figure 10.17

How is ATP produced? Two pathways for the electrons: 1. Non-cyclic electron flow A. produces ATP & NADPH + H + B. Energy released during electron transfer drives proton pump at cytochrome complex C. H + pumped from stroma into thylakoid lumen, creating electrochemical gradient D. H + diffusion back out into stroma drives ATP synthesis in stroma

2. Cyclic electron flow A. Produces ATP only B. electrons transferred from Fd back to the cytochrome complex (instead of to NADP+) C. thus more H + pumped into lumen thus more ATP produced

Why cyclic flow? 1. Non-cyclic flow produces equal amounts of ATP & NADPH + H + 2. But… Calvin cycle requires more ATP than NADPH + H + 3. So…. NADPH + H + builds up builds up in the stroma, triggering the shift to cyclic phosphorylation

Fig 10.15

Rubisco The Calvin Cycle 1. The use of ATP & NADPH to convert CO 2 to carbohydrates 2. 3 steps: 1.Carbon fixation: RuBP + CO 2 3PGA 2.Reduction: 3PGA + ATP + NADPH G3P 3.Regeneration of RuBP from G3P 3. G3P leaves the chloroplast to become sucrose

Fig 10.18

Factors decreasing the efficiency of PSN Overall efficiency < 35% 1. Wavelength (λ) of light – shorter λ have greater energy. PSN use of longer λ means more photons needed 2. Cyclic phosphorylation – need extra photons just for extra ATP production

Photorespiration 1. light-dependent inhibition of C fixation 2. Cause: increased O 2 concentration in leaf – How? Stomata are closed 3. Rubisco adds O 2 to RuBP to make a compound that is converted back to CO 2 in the mitochondria. 4. No carb’s produced, but energy required. 5. Wastes about 50% of C compounds in the chloroplast

Adaptations that increase PSN efficiency C4 plants (many grasses & tropical plants) 1. 4-C compound instead of a 3-C compound (3PGA) as first product of Calvin cycle 2. CO 2 + PEP Oxaloacetate Malate 3. Malate exported to bundle sheath cells 4. CO 2 released from malate to enter Calvin cycle PEP carboxylase

Fig 10.18

Why is the C4 pathway more efficient? 1. PEP carboxylase has much higher affinity for CO 2 than Rubisco 2. CO 2 is stored as malate in the bundle-sheath cells – thus plenty of CO 2 even when stomata closed 3. Benefits? –Increased WUE –Little photorespiration

Crassulacean Acid Metabolism (CAM) 1. Succulents, cacti 2. Stomata open only at night 3. CO 2 is stored in organic acids in mesophyll cells. 4. During day, CO 2 released from organic acids and enters Calvin cycle in same mesophyll cells 5. Same benefits as C4 pathway, but even greater WUE.

Fig 10.20

Being calm helps to build ideas to attain goals.