Presentation on OMPS Nadir Mapper Wavelength Shift Adjustment for Earth-view Measurements.

Slides:



Advertisements
Similar presentations
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Advertisements

Products from the OMPS Limb Profiler (LP) instrument on the Suomi NPP Satellite Pawan K. Bhartia Earth Sciences Division- Atmospheres NASA Goddard Space.
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Brown Bag Lunch Lecture ABI Calibration
Extending the Records: OMPS Ozone Products NOAA Satellite Science Week L. Flynn with contributions from the NOAA and NASA OMPS S-NPP Teams.
Calibration Scenarios for PICASSO-CENA J. A. REAGAN, X. WANG, H. FANG University of Arizona, ECE Dept., Bldg. 104, Tucson, AZ MARY T. OSBORN SAIC,
Developing the VIIRS/DNB Lunar Reflectance Product Steve Miller Updated: 27 July 2012.
METO 621 CHEM Lesson 7. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
Menghua Wang NOAA/NESDIS/ORA E/RA3, Room 102, 5200 Auth Rd.
Atmospheric scatterers
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Atmospheric Emission.
Page 1 1 of 100, L2 Peer Review, 3/24/2006 Level 2 Algorithm Peer Review Polarization Vijay Natraj.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Support Material for OMPS SDR to Beta Maturity Decision Compilation of results from JPSS and NPP OMPS Teams March 12, 2012 Edited by L. Flynn, NOAA/STAR.
Now That I Know That… What Do I Do? (Analyzing your Microtop Solar Radiometry Data)
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
Utilizing the Intersection Between Simulated and Observed Hyperspectral Solar Reflectance Y. Roberts, P. Pilewskie, B. Kindel Laboratory for Atmospheric.
October 29-30, 2001MEIDEX - Crew Tutorial - Calibration F - 1 MEIDEX – Crew Tutorial Calibration of IMC-201 Adam D. Devir, MEIDEX Payload Manager.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
NATIONAL POLAR-ORBITING PARTNERSHIP VERIFICATION AND EARLY OPERATIONS FOR THE OZONE MAPPING AND PROFILE SUITE OMPS IGARSS, Munich DR Lawrence Flynn, Didier.
CE 401 Climate Change Science and Engineering solar input, mean energy budget, orbital variations, radiative forcing January 2012.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
1 An Observatory for Ocean, Climate and Environment SAC-D/Aquarius HSC - Radiometric Calibration H Raimondo M Marenchino 7th SAC-D Aquarius Science Meeting.
NOAA/NESDIS Cooperative Research Program Second Annual Science Symposium SATELLITE CALIBRATION & VALIDATION July Barry Gross (CCNY) Brian Cairns.
Objectives 2.1Scatterplots  Scatterplots  Explanatory and response variables  Interpreting scatterplots  Outliers Adapted from authors’ slides © 2012.
Comparison of Magnesium II Core-to-Wing Ratio Measurements J. Machol 1,2*, M. Snow 3, R. Viereck 4, M. Weber 5, E. Richard 3, L. Puga 4 1 NOAA/National.
Evaluation of OMPS sensor and EV SDR performance Conclusions: Sensors are performing well Calibrations are very good; no sign of degradation Comparisons.
Findings for the OMPS Nadir Profiler Ozone Profile (IMOPO) Products Compiled by L. Flynn from JPSS and S-NPP OMPS Teams Last Updated August 14, 2012.
Delta Review for SNPP OMPS SDR Earth View Products NOAA/NESDIS/STAR August 17, 2015 OMPS SDR Team Fuzhong Weng.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Limb Retrieval at IFE/IUP in Bremen Working team: A. Rozanov, K.-U. Eichmann, C. v. Savigny, J. Kaiser Tests based on level 0 data Normalisation by –Solar.
Support Material for OMPS SDR to Beta Maturity Decision Performance compared to Pre-launch Compilation of results from JPSS and NPP OMPS Teams.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand Science Systems and Applications, Inc. (SSAI) 1 st SOLID Annual Assembly LPC2E, Orleans,
Findings for the OMPS Nadir Mapper 1 st Guess Total Column Ozone (INCTO) Nadir Mapper Total Column Ozone EDR (OOTCO) in Support of Promotion to Beta Maturity.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Requirement: Provide information to air quality decision makers and improve.
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
Validation of OMPS-LP Radiances P. K. Bhartia, Leslie Moy, Zhong Chen, Steve Taylor NASA Goddard Space Flight Center Greenbelt, Maryland, USA.
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
1 Results for OMPS NP OMPS NPP ST Meeting 8/15/2013 L. Flynn (STAR) with contributions from Wei Yu, Jiangou Niu, Zhihua Zhang, Eric Beach, Trevor Beck.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
Collect 5 Calibration Issues Chris Moeller and others Univ. Wisconsin March 22, 2005.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representation of the near-infrared (NIR) structured illumination instrument,
1 SBUV/2 Calibration Lessons Over 30 Years: Liang-Kang Huang, Matthew DeLand, Steve Taylor Science Systems and Applications, Inc. (SSAI) / NASA.
Which Measurement Characterization are the Most Important for UV Instruments?* *That depends on your application. L. Flynn With slides from NASA and NOAA.
Modeling of spectral fine-structure in GOME spectra Rutger van Deelen Otto Hasekamp Jochen Landgraf KNMI November 29, 2006.
Thomas C. Stone U.S. Geological Survey, Flagstaff, AZ USA GSICS Research Working Group Meeting EUMETSAT 24−28 March 2014 Using the Moon as a Radiometric.
GRWG UV Sub-Group Briefing Report
NOAA VIIRS Team GIRO Implementation Updates
V2.0 minus V2.5 RSAS Tangent Height Difference Orbit 3761
What is Correlation Analysis?
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Using SCIAMACHY to calibrate GEO imagers
Hyperspectral Image preprocessing
The Successor of the TOU
CH 3: The Electromagnetic Spectrum
National Satellite Meteorological Centre
Lu Zhang, Peng Zhang , Xiuqing Hu, Lin Chen
Consistent calibration of VIRR onboard FY-3A to FY-3C
The GOES EUVS Model: New Operational Spectral Irradiances from GOES-R
Presentation transcript:

Presentation on OMPS Nadir Mapper Wavelength Shift Adjustment for Earth-view Measurements

Introduction The OMPS Nadir Mapper Earth-view measurements have been found to have intra-orbital shifts in the wavelength scales. They are associated with temperature gradients as the satellite's thermal exposure varies. The pre-launch models predicted shifts smaller than the 0.01 nm performance requirement. On-orbit analysis has detected shifts greater than nm from the orbital average. In addition, the solar measurements are taken at the northern terminator where solar thermal influences are at an extreme. This CCR implements a measurement-based estimate of these changes on a granule by granule basis with in the SDR algorithm to provide better knowledge of the wavelength scale to the total ozone retrieval algorithm. The evidence and then the approach are described in the following slides.

The panels in Slide 4 show the estimated wavelength shifts for four orbits per day for one day every three months. The shifts are for a single cross-track position and computed relative to a fixed Day 1 solar spectrum. The panels in Slide 5 show the differences in two temperature sensors (TC Housing and Nadir Calibration Housing) for the same four days in Figure 1. These two sensors had differences with the best correlation to the results in Slide 4. The undifferenced temperature values have large annual cycles not seen in the spectral shift estimates. There is a lag (~5 minutes) between these particular temperature differences and the shift but the pattern coherence along orbit, among different orbits, and month after month is impressive. The two panels in Slide 6 compare shift estimates from two different methods and show the Cross-track dependence. The primary variations in the cross-track dependence of the shift are related to the spectral scales of the different cross-track solar references and are not thought to be an instrument effect.

Wavelength scale shift estimates for the OMPS NM nadir FOV for first four orbits every four months

Select temperature differences for same orbits

Comparison of cross-track and orbital patterns of estimated Earth radiance scales relative to the current day 1 solar from the proposed method using 346 nm to 380 nm with those from an analysis in an SO2 product formulation. The two sets of results agree well in both along orbit and cross track variations. The results for every tenth scan are used to create the figures.

Description of the Approach The Earth radiance spectra have very similar features to the solar spectra over the 345 nm to 380 nm range, that is, there is little absorption by atmospheric constituents and modest wavelength dependence to scattering and reflectivity. Thus the Fraunhoffer structure is well-reproduced. These common features cancel in properly aligned/coregistered radiance/irradiances ratios so deviations from a flat albedo can be used to estimate the relative wavelength scale difference between a Day 1 Solar and a current Earth radiance measurement. The process is as follows: 1. Estimate the expected pattern in a solar spectrum that a wavelength shift would produce by using the day 1 solar spectrum at 0.42-nm resolution and the wavelength to wavelength variations. (Recall that the OMPS Nadir Mapper has 1.0-nm resolution) This pattern is computed by finding the slope of a quadratic fit of the irradiances for three adjacent values and normalizing the irradiance/pixel slopes by the irradiance spectrum. 2. Estimate the expected pattern in the Earth spectrum that would be produced by inelastic scattering (Ring effect) contributions. This pattern is computed by taking the reciprocal of the solar spectrum. 3. Find the normalized albedo patterns from non-smooth contributions. This set of variations is determined by taking the radiance/irradiance ratio and normalizing by the averages of the two and removing a cubic polynomial in wavelength. 4. Remove similar smooth functions of wavelength from the patterns in 1. and 2. so that all three are relative quantities varying about zero. This is performed by finding and removing polynomial fits for each pattern. Cubics are found to work well. For the Earth-view spectra, this model component is designed to account for the smooth variations in Earth albedo due to the wavelength dependent effects of aerosols, elastic Rayleigh scattering, and cloud and surface reflectivity. Since we take a smooth pattern out of the Earth data we need to take it out of the other two patterns too. 5. Find the components in the normalized albedo related to the two patterns to estimate the wavelength scale shift between the Earth and solar spectra. This is calculated by using the relative variations from 3. and 4. [the Earth albedo (radiance/irradiance ratios) using for measured radiances and the reported solar by using the two patterns (shift and Ring)] in a multiple linear regression. Normalized Earth Albedo = C1 * Normalized Shift pattern + C2 * Normalized Ring Pattern 6. Use the coefficient for the shift pattern from 4. and the shift pattern to adjust the solar spectrum to the Earth wavelength scale and report the new solar spectrum and the shifted scale as outputs in the SDR product. This simply uses the value of C1 and the shift pattern in 1. to create the adjusted output.

New Subroutine in the SDR Algorithm Subroutine sol_wscale_shift.f This subroutine estimates the Earth-view radiances wavelength scale relative to the solar spectrum wavelength scale and returns the new wavelength scale and an appropriately adjusted solar spectrum.

Comparison of Results for Test Granule SOMTC_npp_d _t _e _b06615_c _noaa_ops.h5 SOMTC_npp_d _t _e _b06615_c _ssec_cspp.h5

Comparison of Results for Test Granule SOMTC_npp_d _t _e _b06615_c _noaa_ops.h5 SOMTC_npp_d _t _e _b06615_c _ssec_cspp.h5