Light and Telescopes Please pick up your assigned transmitter

Slides:



Advertisements
Similar presentations
Chapter 6: Telescopes – Portals of Discovery. Visible light is only one type of electromagnetic radiation emitted by stars Each type of EM radiation travels.
Advertisements

Optics and Telescopes Chapter Six. Telescopes The fundamental purpose of any telescope is to gather more light than the naked eye can In many cases telescopes.
Chapter 24: Studying the Sun (and other stars)
Diffraction of Light By definition, diffraction refers to the apparent bending of waves around small obstacles and the spreading out of waves past small.
Astronomical Tools Chapter 5. Astronomical Telescopes Often very large to gather large amounts of light. The northern Gemini Telescope on Hawaii In order.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Optics and Telescopes Chapter 5 Survey of Astronomy om astro1010-lee.com.
1 Earth’s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth’s atmosphere can absorb certain.
Chapter 3: Telescopes. Goals Describe basic types of optical telescopes Explain why bigger is better for telescopes Describe how the Earth’s atmosphere.
The Origin of Modern Astronomy Chapter 4:. Isaac Newton 1689.
Astronomy 101 Section 020 Lecture 6 Optics and Telescopes John T. McGraw, Professor Laurel Ladwig, Planetarium Manager.
Astro 201: Sept. 16, 2010 New: Copies of Lecture Notes and HW are now on d2l, and should be faster to download. HW #3 on line, due Tuesday Midterm #1:
January 24, 2006Astronomy Chapter 5 Astronomical Instruments How do we learn about objects too far away for spacecraft? How do telescopes work? Do.
Slide 1 Light and telescopes Just by analyzing the light received from a star, astronomers can retrieve information about a star’s 1.Total energy output.
This Set of Slides This set of slides deals with telescopes. Units covered: 26, 27, 28, 29, and 30.
Optics and Telescopes Chapter Six.
Telescopes. Optical Telescopes Ground based and on satellites Observations are recorded using a camera instead of the human eye most times. – This is.
TELESCOPES. WHAT IS A TELESCOPE A telescope is an instrument that gathers electromagnetic radiation from objection in space and concentrates it for better.
Telescopes & Light. The Powers of a Telescope Light Gathering Power Light Gathering Power : Astronomers prefer *large* telescopes. A large telescope can.
Studying space from Earth Tele = distance Scopos = to watch Light and radiation How astronomers gather info about space.
Light and Telescopes Chapter 6. Previous chapters have described the sky as it appears to our unaided eyes, but modern astronomers turn powerful telescopes.
Warm Up 1)What does a prism do? a.separates sunlight into ultraviolet and infrared radiation b.separates visible light into several colors c.changes the.
Land Based Telescopes. Telescopes: "light buckets" Primary functions: 1. ___________ from a given region of sky. 2. ______ light. Secondary functions:
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
The Electromagnetic Spectrum, Light, Astronomical Tools.
Chapter 5 Telescopes: “light bucket”. Telescopes have three functions 1.Gather as much light as possible: LGP ∝ Area = πR 2 LGP ∝ Area = πR 2 Why? Why?
ISNS Phenomena of Nature The Eye The eye consists of pupil that allows light into the eye - it controls the amount of light allowed in through the.
How do Astronomers know what they know? Almost everything we know about Astronomy was learned by gathering and studying light from distant sources Properties.
Chapter 3 Light and Telescopes. What do you think? What is the main purpose of a telescope? Why do stars twinkle?
Radiation & Telescopes ____________ radiation: Transmission of energy through space without physical connection through varying electric and magnetic fields.
Light and Telescopes.
Observatories and Telescopes Mauna Kea, Hawaii (14,000 ft) Why do telescopes need to be located at high altitude and dry climate ?
Optics and Telescopes Lecture 11. Why do we use telescopes? Human eyes are lenses! Human eyes are lenses! Using larger lenses… Using larger lenses… 
Creating Light. Light as a Wave Light (or electromagnetic radiation), can be thought of as either a particle or a wave. As a wave, light has a wavelength,
Telescopes. Telescope An instrument that collects electromagnetic radiation from objects in space Concentrates the electromagnetic radiation for better.
© 2010 Pearson Education, Inc. Chapter 6 Telescopes: Portals of Discovery.
Optics and Telescopes. Optics and Telescopes: Guiding Questions 1.How do reflecting and refracting telescopes work? 2.Why is it important that professional.
Studying for the Exam Relevant chapters: E, 1, 2 & 3 To prepare for the exam it is helpful to … –review readings –review lecture notes online (esp. concept.
Tools for Studying Space. © 2011 Pearson Education, Inc. Telescopes.
Telescopes Instrument to gather as much EMR as possible and concentrate it into a focused beam. Optical telescopes gather visible light. Other telescopes.
Light. Review Question What is light? Review Question How can I create light with a cow magnet?
Optics and Telescope Chapter Six. ASTR 111 – 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy.
Tools of Astronomy.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 5.
Chapter 6 Telescopes: Portals of Discovery. 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning How does your eye form an image? How do.
Space Telescopes and Astronomy Physics 113 Goderya Chapter(s): 6 Learning Outcomes:
Optics and Telescopes Chapter Six. Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy I Ch1: Astronomy and the Universe Ch2: Knowing the.
Section 1 – pg 590 Telescopes
Telescopes. Light Hitting a Telescope Mirror huge mirror near a star * * * small mirror far from 2 stars In the second case (reality), light rays from.
TELESCOPE TOUR. Radio and visible waves can go through Earth’s atmosphere.
Telescopes Lecture. Standards Understand how knowledge about the universe comes from evidence collected from advanced technology (e.g., telescopes, satellites,
1 Earth’s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth’s atmosphere can absorb certain.
Chapter 21: Stars, Galaxies, Universe Section 1: telescopes
Telescopes Mr. Hibbetts Special thanks to Dr. Dan Bruton, Astronomy and Physics SFA.
ISP Astronomy Gary D. Westfall1Lecture 7 Telescopes Galileo first used a telescope to observe the sky in 1610 The main function of a telescope is.
Universe Tenth Edition Chapter 6 Optics and Telescopes Roger Freedman Robert Geller William Kaufmann III.
Refracting Telescopes 24.2 Tools for Studying Space  A refracting telescope is a telescope that uses a lens to bend or refract light.  Focus The most.
Light and Telescopes Chapter 5. In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In this.
Telescopes & Light. History Hans Lippershey Middleburg, Holland –invented the refractor telescope in 1608 Galileo –the first to use a telescope in astronomy.
Telescopes Types of Telescopes There are telescopes in all emag. wavelengths. Optical telescopes use visible light. Examples: Refracting Telescope, Reflecting.
Telescopes.
Chapter 6 Telescopes: Portals of Discovery
Telescopes & Light.
Chapter 6 Light and Telescopes.
Light and Telescopes.
Telescopes and the Electromagnetic Spectrum Section 3
Telescopes.
Unit E – Space Exploration
Presentation transcript:

Light and Telescopes Please pick up your assigned transmitter Please pick up your assigned transmitter and swipe your student ID for attendance tracking.

Light as a Wave (I) f = c/l l l Unit of frequency: 1 Hz (“Hertz”) = 1/s. c = 300,000 km/s = 3*108 m/s Light waves are characterized by a wavelength l and a frequency f. f and l are related through f = c/l

Light as a Wave (II) Wavelengths of light are measured in units of nanometers (nm) or Ångström (Å): 1 nm = 10-9 m 1 Å = 10-10 m = 0.1 nm Visible light has wavelengths between 4000 Å and 7000 Å (= 400 – 700 nm).

What is the frequency of typical optical light with a wavelength of l = 5000 Å (= 5*10-7 m)? 1.5*104 Hz 1.5*106 Hz 6*1012 Hz 6*1013 Hz 6*1014 Hz :09 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 0 of 116

Wavelengths and Colors 7000 Å 4000 Å Different colors of visible light correspond to different wavelengths.

The Electromagnetic Spectrum Wavelength Frequency High flying air planes or satellites Need satellites to observe

Frequency and Temperature Every object emits electromagnetic radiation, according to its temperature: The hotter an object is, the higher the frequency at which it emits radiation. 109 oK 106 oK 103 oK 1 oK Temperature

The Sky in Different Wavelength Bands Radio Waves Visible light g-rays Infrared X-rays

Which of the following forms of radiation indicates the highest temperatures? :08 Visible light Infrared radiation X-rays Ultraviolet light Radio waves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 0 of 116

The larger the telescope, the more light it gathers. Optical Telescopes Astronomers use telescopes to gather more light from astronomical objects. The larger the telescope, the more light it gathers.

Refracting / Reflecting Telescopes Refracting Telescope: Lens focuses light onto the focal plane Focal length Reflecting Telescope: Concave Mirror focuses light onto the focal plane Focal length Almost all modern telescopes are reflecting (mirror) telescopes.

Disadvantages of refracting telescopes Chromatic aberration: Different wavelengths are focused at different focal lengths (prism effect). Can be corrected, but not eliminated by second lens out of different material. Difficult and expensive to produce: All surfaces must be perfectly shaped; glass must be flawless; lens can only be supported at the edges

Secondary Optics In reflecting telescops: Secondary mirror, to re-direct light path towards back or side of incoming light path. Eyepiece: To view and enlarge the small image produced in the focal plane of the primary optics.

In order to gather as much light as possible from the object you observe, you want to build the telescope mirror … :08 As thick as possible. With as large a focal length as possible. With as small a focal length as possible. As large in diameter as possible. As small in diameter as possible. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 0 of 116

The Powers of a Telescope: Size does matter! Light-gathering power: Depends on the surface area A of the primary lens / mirror, proportional to diameter, D, squared. D

The Powers of a Telescope (II) 2. Resolving power: Wave nature of light => The telescope aperture produces fringe rings that set a limit to the resolution of the telescope. Resolving power = minimum angular distance amin between two objects that can be separated. amin = 1.22 (l/D) amin For optical wavelengths, this gives amin = 11.6 arcsec / D[cm]

amin [arc seconds] = 11.6/D[cm] Ohio University owns a share of the 2.4-m MDM telescope (i.e., D = 2.4 m) on Kitt Peak, AZ. Can this telescope (in principle) resolve two stars which are 1 arc second apart? Yes No :05 amin [arc seconds] = 11.6/D[cm] = 11.6/240 ≈ 0.05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 The telescope could in principle (under ideal conditions) resolve objects that are 0.05 arc seconds apart! 0 of 116

Seeing Weather conditions and turbulence in the atmosphere set further limits to the quality of astronomical images Bad seeing Good seeing

The Hubble Space Telescope Launched in 1990; maintained and upgraded by several space shuttle service missions throughout the 1990s and early 2000’s Avoids turbulence in the Earth’s atmosphere Extends imaging and spectroscopy to (invisible) infrared and ultraviolet

The Advantage of HST HST image Ground based image

The Powers of a Telescope (III) 3. Magnifying Power = ability of the telescope to make the image appear bigger. The magnification depends on the ratio of focal lengths of the primary mirror/lens (Fo) and the eyepiece (Fe): M = Fo/Fe A larger magnification does not improve the resolving power of the telescope!

Why are the Mountains of the Arizona Desert are one of the preferred locations for telescopes in the U.S.? Astronomers like mountain hiking. The climate is very dry. There are only few cities which light up the sky with artificial lights. It’s warmer than in most of the rest of the country. 1. – 3. 2. + 3. 2. – 4. :08 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 0 of 116

The Best Location for a Telescope Far away from civilization – to avoid light pollution

The Best Location for a Telescope (II) Paranal Observatory (ESO), Chile On high mountain-tops – to avoid atmospheric turbulence (→ seeing) and other weather effects

Examples of Modern Telescope Design (I) Design of the Large Binocular Telescope (LBT) The Keck I telescope mirror

Examples of Modern Telescope Design (II) The Very Large Telescope (VLT) 8.1-m mirror of the Gemini Telescopes

Could you use a telescope in your back-yard to observe infrared radiation from space? Yes, but you will need a special infrared detector. Yes, but you will need a special infrared filter in order not to burn your eyes (or your detector). No, because infrared radiation can not be detected at all. No, because infrared radiation is absorbed very high in the Earth’s atmosphere. No, because infrared radiation is absorbed in the lower atmosphere. :09 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 0 of 116

NASA infrared telescope on Mauna Kea, Hawaii Infrared Astronomy Most infrared radiation is absorbed in the lower atmosphere. However, from high mountain tops or high-flying air planes, some infrared radiation can still be observed. NASA infrared telescope on Mauna Kea, Hawaii

NASA’s “Spitzer” Infrared Space Telescope