Radiation Detectors / Particle Detectors

Slides:



Advertisements
Similar presentations
Radioactivity.
Advertisements

General Characteristics of Gas Detectors
Radiation Detection ionization chambers (dosimeters, pulse chambers, particle track chambers) scintillation detectors semiconductor detectors photographic.
Geiger Counters. Higher Voltage As the voltage increases in a gas detector the ions collected increases. The proportional region ends. –Streamer mode.
GM COUNTER.
Geiger-Muller detector and Ionization chamber
Detecting Radiation and Radiation Around You What is radiation? Radiation is the giving off of high amounts of energy in the form of particles and/or waves.
Geiger- Muller counter
Radioactivity Radiation: –stream of particles/waves Radioactive Materials: –material that emit penetrating/dangerous radiation –radiation comes from nucleus.
PHYS:1200 FINAL EXAM 1 FINAL EXAM: Wednesday December 17, 12:30 P - 2:30 P in LR-1 VAN FE covers Lectures 23 – 36 The study guide, formulas, and practice.
Detectors. Measuring Ions  A beam of charged particles will ionize gas. Particle energy E Chamber area A  An applied field will cause ions and electrons.
Main detector types Multi Pixel Photon Counter (MPPC) and Charge Coupled Devices (CCDs) How does it work? 1. Photon hits a pixel producing electron hole.
Techniques for detecting X-rays and gamma-rays Pair production Creation of elementary particle and its antiparticle from a photon. Occurs only if enough.
L 37 Modern Physics [3] [L37] Nuclear physics –what’s inside the nucleus and what holds it together –what is radioactivity –carbon dating [L38] Nuclear.
29:006 FINAL EXAM FRIDAY MAY 11 3:00 – 5:00 PM IN LR1 VAN.
Lecture 11  Production of Positron Emitters, Continued  The Positron Tomograph.
Photon and Energy Fluence
Chapter 6 Principles of Radiation Detection. Measurement of Radiation X-rays and electrons produced by radiation therapy treatment machines are measured.
Instruments for Radiation Detection and Measurement Lab # 3 (1)
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Type of Material: Instrumentation Review
1 Alpha Emissions (How a Smoke Alarm Works). 2 Radioactive Emissions (Radiation) Penetrating Power SymbolEquivalentDescriptionType He Stopped by thick.
Who is this?. Marie Curie Born 1867 Poland 1893 degree in physics, 1894 degree in mathematics Denied a place in Krakow University because she was.
Chapter 21: Nuclear Chemistry The study of nuclear reactions with an emphasis on their uses in chemistry and their effects on biological systems.
L 37 Modern Physics [3] Nuclear physics Nuclear energy
Chapter 30: Nuclear Physics and Radioactivity. Radioactivity Radioactivity is the discentigration of an unstable nuclei. when the nuclei decays the nucleus.
FISICA AMBIENTALE 1 Radioattività: misure 1 Lezioni Marie Curie.
Tools for Nuclear & Particle Physics Experimental Background.
SCINTILLATION COUNTER. PRINCIPLE When light radiations strike fluorescent material it produces flashes of light called scintillations. These are detected.
Radioactivity I §Content: §Radioactive substance §Three types of radiation §Properties of radiation §To investigate the radiation by apparatus §To summarize.
Instrumentation Review. Direct and Indirect Ionization Direct - Charge particles that strip away electrons from atoms Indirect - uncharged that have to.
Radioactivity and radioisotopes The nature of radiation Distinguishing Radiation Background Radiation.
Nuclear Radiation R A D I O A C T I V ER A D I O A C T I V E ?
Ionization Detectors Basic operation
Med Phys 3A03/3AA1 Practical Health & Medical Physics Communications D.R. Chettle, with D.F. Moscu TA: Helen Moise.
Seeing the Subatomic Stephen Miller Saturday Morning Physics October 11, 2003.
RADIATION *Penetrating rays emitted by a radioactive source *Ranges from Cosmic and Gamma Rays to Radio Waves.
Senior Design 1 Project RNG: Radiation-Based Random Number Generator Team Oregon Chub –Colton Hamm (Team Leader) –Alex Brotherston –Ashley Donahoo –Matt.
Nuclear Physics Nuclei atomic number Z = protons
L-35 Modern Physics-3 Nuclear Physics
PHYSICS 225, 2 ND YEAR LAB NUCLEAR RADIATION DETECTORS G.F. West Thurs, Jan. 19.
L 37 Modern Physics [3] Nuclear physics Nuclear energy
Radioactivity By the end of this chapter you should be able to: describe the properties of alpha, beta and gamma radiations; explain why some nuclei are.
INTERACTIONS OF RADIATION WITH MATTER. twCshttp:// twCs
Geiger counter NTHU General Physics Laboratory
Chapter V Radiation Detectors.
KS4 Radioactivity. AlphaBetaGamma Penetrating power Range of radiation leastmediummost shortestmediumlongest.
Geiger-Mueller Counters Darwin L. Boyd Kent State University School of Technology.
Radioactivity Discovery of radioactivity Discovery of radioactivity (1896) : Henri Becquerel Next Slide Exposure of film by X-ray Discovery of radioactive.
Radioactivity – Outcomes  Describe the experimental evidence for there being three types of radiation.  Discuss the nature and properties of each type.
L 37 Modern Physics [3] Nuclear physics –what’s inside the nucleus and what holds it together –what is radioactivity –carbon dating Nuclear energy –nuclear.
Radiation detectors Ion chamber 2. Geiger Muller counter (GM).
PCS352 LAB #1 Characteristics of a Geiger Counter
Topic 6 : Atomic and Nuclear Physics.
L-35 Atomic and Nuclear Physics-3
Project RNG: Radiation-Based Random Number Generator
L 37 Modern Physics [3] Nuclear physics Nuclear energy
L 36 Modern Physics [3] [L36] Nuclear physics [L37] Nuclear energy
Radiation Detectors : Detection actually means measurement of the radiation with its energy content and other related properties. The detection system.
L 37 Modern Physics [3] Nuclear physics Nuclear energy
核子醫學技術學實驗 Radioactivity measurement, Dose Calibrator
Radiation Detection, Measurements and Instruments
Scintillation Counter
NUCLEAR REACTOR MATERIALS
NUCLEAR RADIATION DETECTORS
STARTER WHAT QUESTIONS DO YOU WANT ANSWERED ABOUT NUCLEAR RADIATION?
Geiger-Mueller Tubes By: Daniel Hancock.
Atomic Physics Radiation Contiuned.
Transmutation Reactions
Presentation transcript:

Radiation Detectors / Particle Detectors

… is a device used to detect, track, and/or identify high-energy particles [e.g., those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator].

… Modern detectors are also used as calorimeters [to measure the energy of the detected radiation]. They may also be used to measure other attributes such as momentum, spin, charge, etc. of the particles.

Counter! The term counter is often used instead of detector, when the detector counts the particles, but does not resolve its energy or ionization. Many of the detectors invented and used so far are ionization detectors & scintillation detectors Scintillation is a flash of light produced in a transparent material by the passage of a particle (an electron, an alpha particle, an ion, or a high-energy photon).

Detectors for Radiation Protection The following types of particle detector are widely used for radiation protection, and are commercially produced in large quantities for general use within the nuclear, medical and environmental fields. Gaseous ionization detectors Geiger-Müller tube Ionization chamber Proportional counter Scintillation counter Semiconductor detectors Dosimeters Electroscopes (when used as portable dosimeters)

Plot of relative level of ion-pair current with increasing voltage applied between anode and cathode for a wire cylinder ionization detection system with constant incident ionizing radiation. This covers the practical areas of operation of the Geiger-Muller counter, the proportional counter and the ionization chamber.

Gaseous ionization detectors The plot – has 3 main practical operating regions, one of which each type utilizes. Gaseous ionization detectors Geiger-Müller tube Ionization chamber Proportional counter

All of these have the same basic design of two electrodes separated by air or a special fill gas, but each uses a different method to measure the total number of ion-pairs that are collected. The strength of the electric field between the electrodes and the type and pressure of the fill gas determines the detector's response to ionizing radiation.

GM tube or counter …used for the detection of ionizing radiation used for the detection of gamma radiation, X-Rays, and alpha and beta particles. It can also be adapted to detect neutrons.

The tube operates in the "Geiger" region of ion pair generation. This is shown on the accompanying plot for gaseous detectors showing ion current against applied voltage using a model based on a co-axial tube detector.

+/- + it is a robust and inexpensive detector, it is unable to measure high radiation rates efficiently, has a finite life in high radiation areas and is unable to measure incident radiation energy, so no spectral information can be generated and there is no discrimination between radiation types.

The tube consists of a chamber filled with a low-pressure (~0 The tube consists of a chamber filled with a low-pressure (~0.1 atm) inert gas. This contains two electrodes, between which there is a potential difference of several hundred volts. The walls of the tube are either metal or have their inside surface coated with a conductor to form the cathode, while the anode is a wire in the center of the chamber.

When ionizing radiation strikes the tube, some molecules of the fill gas are ionized, Either directly by the incident radiation Or, indirectly by means of secondary electrons produced in the walls of the tube.

This creates positively charged ions and electrons, known as ion pairs, in the gas. The strong electric field  created by the tube's electrodes  accelerates the positive ions towards the cathode and the electrons towards the anode.

Close to the anode in the "avalanche region"  the electrons gain sufficient energy to ionize additional gas molecules and create a large number of electron avalanches, which spread along the anode and effectively throughout the avalanche region. This is the "gas multiplication" effect, which gives the tube its key characteristic of being able to produce a significant output pulse from a single ionizing event.

Pressure of the fill gas is important in the generation of avalanches. Too low a pressure and the efficiency of interaction with incident radiation is reduced. Too high a pressure, and the “mean free path” for collisions between accelerated electrons and the fill gas is too small, and the electrons cannot gather enough energy between each collision to cause ionization of the gas.

The energy gained by electrons is proportional to the ratio “e/p” where, e  is the electric field strength at that point in the gas, p  is the gas pressure

End window type

For alpha, beta and low energy X-ray detection the usual form is a cylindrical end-window tube. This type has a window at one end covered in a thin material through which low-penetration radiation can easily pass. Mica is a commonly-used material due to its low mass per unit area. The other end houses the electrical connection to the anode.

Windowless type Thick-walled Thin-walled

Thick-walled Used for high energy gamma detection, this type generally has an overall wall thickness of about 1-2mm of chrome steel. Because most high energy gamma photons will pass through the low density fill gas without interacting, the tube uses the interaction of photons on the molecules of the wall material to produce high energy secondary electrons within the wall. 

Thin-walled Thin walled tubes are used for: high energy beta detection: where the beta enters via the side of the tube and interacts directly with the gas, but the radiation has to be energetic enough to penetrate the tube wall. Low energy beta, which would penetrate an end window, would be stopped by the tube wall.

… Thin walled tubes are used for: Low energy gamma and X-ray detection: The lower energy photons interact better with the fill gas so this design concentrates on increasing the volume of the fill gas by using a long thin walled tube and does not use the interaction of photons in the tube wall.

The transition from thin walled to thick walled design takes place at the 300-400 KeV energy levels. Above these levels thick-walled designs are used, and beneath these levels the direct gas ionization effect is predominant.

Neutron detectors G-M tubes will not detect neutrons since these do not ionize the gas. However, neutron-sensitive tubes can be produced which either have the inside of the tube coated with boron, or the tube contains boron trifluoride or helium-3 as the fill gas.

The neutrons interact with the boron nuclei, producing alpha particles, or directly with the helium-3 nuclei producing hydrogen and tritium ions and electrons. These charged particles then trigger the normal avalanche process.