Commercial Voltaic Cells A voltaic cell can be a convenient, portable source of electricity. We know them as batteries. Batteries have been in use for.

Slides:



Advertisements
Similar presentations
Chapter 11 Oxidation (氧化) and Reduction (还原)
Advertisements

Chapter 20 Electrochemistry
Electricity from Chemical Reactions
Harnessing the Power of Voltaic Cells Batteries and Corrosion
Cells & Batteries. Primary Cells these cells cannot be easily re-charged; once they die… they stay dead.
 Fuel cell: A device that converts chemical energy into electrical energy.  In the hydrogen- oxygen fuel cell, both cathode and anode are made of porous.
Electrochemistry III. QUESTION Meals Ready to Eat (MREs) were developed during the Vietnam War. They need hot water to be reconstituted. The military.
Anode: Zn (s) Zn 2+ (aq) + 2e - (simplified) Cathode: (simplified reaction) 2 NH 4 + (aq) + 2MnO 2(s) + 2e - Mn 2 O 3(s) + 2 NH 3(aq) + H 2 O Overall reaction:
Chapter 21: Electrochemistry
Electrochemistry III. QUESTION Meals Ready to Eat (MREs) were developed during the Vietnam War. They need hot water to be reconstituted. The military.
Electrochemistry Batteries. Batteries Lead-Acid Battery A 12 V car battery consists of 6 cathode/anode pairs each producing 2 V. Cathode: PbO 2 on a metal.
Batteries Physics. Power Cell Device for storing chemical energy and then releasing it in the form of electricity when current is needed.
Chapter 19 Electrochemistry
Apr 24Ch 7 Apr 26Ch 8Letter due May 1Ch 8 May 3Ch 8Q 10, HW 9 May 8Ch 8? May 10Exam 3 (Ch 5, 7, 8)HW 10 May 15Review and Wrap-up.
Cells and Batteries Chapter 27. Portable Power A mobile phone, a laptop, an MP3 player and a hearing aid all depend on small portable sources of electricity:
Fuel Cells and Rechargeable Batteries C5. C.5.1 Describe how a hydrogen oxygen fuel cell works. Alkaline fuel cells usually use a mobilized or immobilized.
Cells and Batteries.
BATTERIES.
Fuel Cells & Rechargeable Batteries By Anisha Kesarwani 2013.
1 Electrochemistry. 2 Electricity Movt of electrons Movt of electrons Movt of electrons through wire connecting 2 half-reactions  electrochemical cell.
Electrochemical Cells
20-2 Batteries A battery is a group of cells in a series...the total charge is the sum of the charges of the cells. D,C,AA, AAA and other similar products.
Section 18.1 Electron Transfer Reactions 1.To learn about metal-nonmetal oxidation–reduction reactions 2.To learn to assign oxidation states Objectives.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
CHAPTER 17 Electrochemistry – part 2. Electrolysis and Electrolytic Cells Anode: where oxidation takes place ◦ Anions are oxidized at this electrode ◦
Redox Reactions and Electrochemistry Chapter 19. Applications of Oxidation-Reduction Reactions.
Read Sections 8.3, and 8.4 before viewing the slide show.
Electrochemistry is the chemistry of reactions which involve electron transfer. In spontaneous reactions electrons are released with energy which can.
Example 2:Example 2:  Calculate the values of Δ G° and K eq at 25°C for the following reaction:  3Mg (s) + 2Al +3 (1M)  3Mg +2 (1M) + 2Al (s)
Using and Controlling Reactions Assign oxidation numbers and balance atom whose oxidation number changes 2. Balance oxygen by adding water 3. Balance.
Batteries.
Chapter 27 – Cells and Batteries
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Oxidation and Reduction
Cells and Batteries Energy From Electron Transfer Developed by Dev Walia and 2012 grade 12s.
Inorganic chemistry Assistance Lecturer Amjad Ahmed Jumaa  Batteries and their application.  Primary (nonrecharge able) batteries. 
Voltaic Cells Batteries, etc.. Essentials Electrochemical setups that can generate electricity They release energy and are spontaneous E cell is positive.
Battery Reactions and Chemistry In any battery, an electrochemical reaction occurs like the ones described on the previous page. This reaction moves electrons.
CHEM 163 Chapter 21 Spring minute review What is a redox reaction? 2.
 Deals with the relation of the flow of electric current to chemical changes and the conversion of chemical to electrical energy (Electrochemical Cell)
Prentice Hall ©2004 Chapter 18Slide 1 Redox reaction are those involving the oxidation and reduction of species. OIL – Oxidation Is Loss of electrons.
Electrochemistry – part 2
Applications of Electrochemical Cells: (Batteries)
Electrochemical Cells in Actions Batteries and Fuel Cells Chapter 15.
 Conversion of chemical energy and electrical energy  All involve redox reactions  Electrochemical Cell: any device that converts chemical energy into.
Chemistry Chapter 19 D.  Defined: branch of chemistry that deals with electricity-related redox reactions  Electrochemical cell: ◦ System of electrodes.
What exactly are batteries?. Batteries  Connects objects  Converts chemical---electrical energy  Two or more voltaic cells connected to each other.
Chem. 1B – 11/10 Lecture. Announcements Mastering Chemistry –Chapter 18 Assignment is due 11/17 Today’s Lecture – Electrochemistry (Ch. 18) –More Nernst.
Dry Cell Battery Anode (-) Zn ---> Zn2+ + 2e- Cathode (+)
Commercial Voltaic Cells. 3.7…or Applications of Voltaic Cells…
Prentice-Hall © 2007 General Chemistry: Chapter 20 Slide 1 of 54 Juana Mendenhall, Ph.D. Assistant Professor Lecture 4 March 22 Chapter 20: Electrochemistry.
OXIDATION ANY REACTION IN WHICH A SUBSTANCE LOSES ELECTRONS
Batteries b A galvanic cell, or more commonly, a group of galvanic cells connected in series where the potentials of the individual cells are added to.
SCI3023 ELECTROCHEMISTRY Chapter 6b : Battery - Electrochemical Ce ll.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Topic 5 - Portable Power Electrolyte: Wet or dry substance that conducts electricity because it can form ions. Eg. Salt water, battery acid An electrochemical.
Chapter 21 Electrochemistry. Voltaic Cells  Electrochemical cells used to convert chemical energy into electrical energy  Produced by spontaneous redox.
Electrochemistry f.
Secondary Cell Nickel Cadmium (NiCd) Cells and Batteries
Engineering Chemistry CHM 406
Chapter 27 – Cells and Batteries
Chemsheets AS006 (Electron arrangement)
Chemsheets AS006 (Electron arrangement)
Electro chemical studies on lead acid batteries
Chapter 21: Electrochemistry
What are batteries? How do they work?.
Cells & Batteries.
Chemsheets AS006 (Electron arrangement)
Storage cells and fuel cells
Presentation transcript:

Commercial Voltaic Cells A voltaic cell can be a convenient, portable source of electricity. We know them as batteries. Batteries have been in use for over 100 years in various forms. The technology of batteries remained fairly stagnant until about Why???

Lead-Acid Battery This type of cell has been around for over 80 years. It uses lead as the anode and lead(IV) oxide as the cathode. Highly caustic H 2 SO 4 is also involved in the overall reaction. The reaction produces a reliable 2.0 V.

Lead-Acid Battery

The half-reactions are: Pb (s) + HSO 4 - (aq)  PbSO 4(s) + H + (aq) + 2e (anode) PbO 2(s) + 3H + (aq) + HSO 4 - (aq) + 2e  PbSO 4(s) + 2H 2 O (l) (cathode) Overall reaction is: PbO 2(s) + Pb (s) + 2H + (aq) + 2HSO 4 - (aq)  2PbSO 4(s) + 2H 2 O (l) During recharging, water is consumed. This used to require that water occasionally was added to the battery. The new batteries use Pb/Ca alloy as the anode which resists the consumption of water. This has led to the “maintenance-free” batteries.

Lead-Acid Battery Advantages: produces steady voltage, very high current, many recharges, relatively low cost. Disadvantages: environmental concerns, massive, reverse reaction can produce H 2.

Zinc-Carbon Dry Cell Known also as the LeLanche cell (for its inventor), uses a zinc can as the anode and a graphite rod as the cathode. A paste containing NH 4 Cl and MnO 2 separates the two electrodes.

Zinc-Carbon Dry Cell The anode and cathode reactions are: Zn (s)  Zn +2 (aq) + 2e - (anode) 2 NH 4 + (aq) + 2 MnO 2(s) + 2e -  Mn 2 O 3(s) + H 2 O (l) + 2 NH 3(aq (cathode) Advantages: inexpensive, produces a reliable 1.5 V. Disadvantages: performs poorly under high demand, poor in cold weather, prone to leak when it gets old, environmental (disposal).

The Zinc-Carbon Dry Cell

Alkaline Dry Cell Similar, but uses KOH as the paste between the electrodes. The reactions are: Zn (s) + 2OH - (aq)  Zn(OH) 2(s) + 2e (anode) 2MnO 2(s) + H 2 O (l) + 2e  Mn 2 O 3(s) + 2 OH - (aq) (cathode) Advantages: better under high demand, better in cold weather. Disadvantages: higher cost, environmental (disposal).

Alkaline Dry Cell

NiCad Cell Nickel-Cadmium (Nicad) batteries were some of the first widely used rechargeable batteries. The reactions are: Cd (s) + 2OH - (aq)  Cd(OH) 2(s) + 2e (anode) NiOOH (s) + H 2 O (l) + e  Ni(OH) 2(s) + OH - (aq) (cathode) Advantages: easy to recharge, many recharge cycles, good current supply. Disadvantages: longer recharge times, cost, weight, toxicity of Cd, and “memory loss.”

NiMH Cell Newer version is the Nickel-Metal hydride (NiMH) battery that has longer life and eliminates the Cadmium which is replaced with a ZrNi 2 metal alloy. This alloy absorbs Hydrogen anions that are oxidized. Most hybrid automobiles use these type of batteries. Advantages: Have a very long-life and can last for up to eight years. Disadvantage: Replacement costs in an auto can be upwards of $8,000.

Lithium-Iodine Cell A “true” dry cell. The anode is lithium metal and the cathode is an I 2 crystal. Current is carried by diffusion of Li + ions. This battery is used in pacemakers as well as the BIOS in computers.

Lithium-Iodine Cell The anode and cathode reactions are: Li (s)  Li + (aq) + 1e(anode) I 2(s) + 2e  2 I - (aq) (cathode) Advantages: environmentally friendly, produces a large voltage (3.0 V), long life, rechargeable, large power to mass ratio. Disadvantages: produces low current, cost.

Lithium-Ion Cell A newer version of the previous type. Graphite serves as one electrode with LiCoO 2 as the other electrode. During charging, the Li + ions migrate to the anode (graphite) and the Cobalt is oxidized. During discharge, the Li + migrate spontaneously to the cathode. These are the batteries of choice for most portable computers and PDA’s. Can be recharged many times for up to two years.

Lithium-Ion Cell

Advantages: Store more energy per gram of weight, hold their charge of long periods, and each cell has a large voltage (3.6V). Disadvantages: Degrade even without use, last two to three years, cannot be completely discharged, and may catch fire if they fail.

Cell Voltages / Currents Most devices require voltages of 3.0, 6.0, or even 12.0V as well as high currents. To produce these values, cells are placed in both series as well as in parallel.

Fuel Cells Energy choice of the future. Not a true battery as it requires a constant supply of reactants. Used by NASA on space vehicles to generate electricity. May soon be mass produced for automobile propulsion. Smaller versions could power laptops and cell phones.

Fuel Cells The overall reaction converts H 2 and O 2 into H 2 O. 2 H 2(g) + 4 OH - (aq)  4 H 2 O (l) + 4e (anode) O 2(g) + 2 H 2 O (l) + 4e  4 OH - (aq) (cathode) Overall Reaction is: 2 H 2(g) + O 2(g)  2 H 2 O (l)

Fuel Cells

Fuel Cell Organization Fuel Cell Producer / Researcher

Fuel Cells Advantages: best for the environment - produces water!, relatively low mass, much more efficient than the internal combustion engine, greatly simplify car design. Disadvantages: cost, storage / use of hydrogen, mass production, acceptance.

Corrosion Electrochemical process of corrosion is essentially a mini voltaic cell. When a drop of water comes into contact with iron, the corrosion process begins. At the center of the drop, iron metal is oxidized: Fe  Fe e. At the edges, oxygen is reduced: O 2 + 4H + + 4e  2H 2 O

Corrosion

Corrosion of iron is more favored when: Moisture is present Concentrations of electrolytes (salt) is present Lower pH’s Prevention of corrosion can be achieved by: Paint – prevents oxygen and water from interacting with the iron Use of a sacrificial metal – any more active metal in contact with the iron will be oxidized in preference to the iron. This is sometimes called cathodic protection.

Cathodic Protection