Inner Cool Disks in the Low/Hard State of Accreting Black Holes 刘碧芳云南天文台 In collaboration with R.E. Taam, F. Meyer, and E. Meyer-Hofmeister.

Slides:



Advertisements
Similar presentations
AGN Feedback at the Parsec Scale Feng Yuan Shanghai Astronomical Observatory, CAS with: F. G. Xie (SHAO) J. P. Ostriker (Princeton University) M. Li (SHAO)
Advertisements

An accretion disk-corona model for X-ray spectra of active galactic nuclei Xinwu Cao Shanghai Astronomical Observatory.
Some issues on models of black hole X-ray binaries Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Sciences.
Disk corona in AGN: what do we expect? Bifang Liu Yunnan Observatory, CAS The disk corona evaporation model The model for X-ray binaries Similarities between.
Jeanette Gladstone - University of Alberta Tim Roberts, Chris Done - Durham University Jeanette Gladstone - University of Alberta Tim Roberts, Chris Done.
High Energy View of Accreting Objects: AGN and X-ray Binaries Geometrical Configuration of Accretion Flows in Cyg X-1 in the Low/Hard State.
Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
Abstract We present first modeling results of the rapid spectral variability of flares in the X-ray binary Cygnus X-1 in the high/soft state. The coupled.
Andrzej A. Zdziarski Centrum Astronomiczne im. M. Kopernika Warszawa, Poland Radiative processes and geometry of accreting black holes.
Getting to Eddington and beyond in AGN and binaries! Chris Done University of Durham.
Shuang-Nan Zhang, Yuan Liu, Jin Zhang Institute of High Energy Physics
A reflection origin for the soft and hard X-ray excess of Ark 120 Ferrara, 2010 May in collaboration with: Andy Fabian, Rubens Reis, Dom Walton (Institute.
The high mass accretion rate spectra of GX 339-4: Black hole spin from reflection? Mari Kolehmainen & Chris Done, Durham University Maria Diaz Trigo, ESO.
Super-Eddington Accretion: Models and Applications Jian-Min Wang Institute of High Energy Physics 2005, 4, 26.
Steady Models of Black Hole Accretion Disks including Azimuthal Magnetic Fields Hiroshi Oda (Chiba Univ.) Mami Machida (NAOJ) Kenji Nakamura (Matsue) Ryoji.
Accretion Disk Spectra of Ultra- luminous X-ray Sources and Galactic superluminal jet sources Ken Ebisawa (INTEGRAL Science Data Center, NASA/GSFC) Piotr.
Chris Done, Chichuin Jin, Mari Kolehmainen
Irradiated accretion disk emission from an ultrasoft AGN? OM The unusually hot ‘big blue bump’ When Beppo-SAX measured the 0.1 to 12keV.
Electron thermalization and emission from compact magnetized sources
Truncated disc and X-ray spectral states of black holes
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J.McTiernan (SSL/UCB) ABSTRACT: We use the RHESSI flare database to measure the center to limb.
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J. McTiernan SSL/UCB.
Summary of Selection Criteria (120 total objects in sample) Hard X-ray fluxes [ F ] keV > 2.5x [erg/cm 2 /s] in Swift-BAT catalog Spectral.
Broadband SED of Microquasars 微类星体的宽波段光谱能量分布 WU, Xue-Bing (吴学兵) 北京大学天文学系 (Dept. of Astronomy, Peking University)
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Disentangling disc variability in the hard state
Luminous Hot Accretion Flows extending ADAF beyond its critical accretion rate Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Science.
Decoding the time-lags in accreting black holes with XMM-Newton Phil Uttley Thanks to: P. Cassatella, T. Wilkinson, J. Wilms, K. Pottschmidt, M. Hanke,
1 The Fundamental Plane Relationship of Astrophysical Black Holes Ran Wang Supervisor: Xuebing Wu Peking University Ran Wang Supervisor: Xuebing Wu Peking.
吸积盘的蒸发与冕 引言: 吸积的重要性 黑洞 X- 射线双星中的观测光谱 基本的吸积理论模型 吸积盘与冕:从 CV 到 X-ray 双星 光谱态变换中的延迟现象:吸积盘与冕模 型的另一观测支持 AGN 中的吸积盘与冕:磁重联模型.
Measuring the black hole spin of GX 339-4: A systematic look at its very high and low/hard state. Rubens Reis Institute of Astronomy - Cambridge In collaboration.
Accretion Phenomena in Accreting Neutron Stars From atol to Z-sources Norbert S. Schulz, L. Ji, M. Nowak Claude R. Canizares MIT Kavli Institute for Astrophysics.
Type-I Bursts as a Probe of the XRB Corona
Ramesh Narayan (McClintock, Shafee, Remillard, Davis, Li)
Variability of radio-quiet AGN across the spectrum: facts and ideas B. Czerny Copernicus Astronomical Center, Warsaw, Poland.
Sub-Eddington accretion flows in neutron-star low-mass X-ray binaries Rudy Wijnands Astronomical Institute “Anton Pannekoek” University of Amsterdam 25.
Extreme soft X-ray emission from the broad-line quasar REJ R.L.C. Starling 1*, E.M. Puchnarewicz 1, K.O. Mason 1 & E. Romero- Colmenero 2 1 Mullard.
Magnetically Supported Black Hole Accretion Disk and Its Application to State Transition of Black Hole Candidate Hiroshi Oda (CfA/Chiba Univ.) M. Machida.
Light bending scenario for accreting black holes in X-ray polarimetry 王 炎 南京大学天文系 2011 年 4 月 11 日 arXiv: M. Dovciak, F. Muleri, R. W. Goosmann,
Investigating the relation of corona and disk from a blue AGN sample Liu, Jieying Yunnan Astronomical Observatory, CAS 第三届黑洞天体物理前沿问题年度研讨会 (2008),SHAO ,
Black holes and accretion flows Chris Done University of Durham.
On the X-ray origin in Quiescent Black Hole X-ray Binaries Hui Zhang ( 张惠 ) Shanghai Astronomical Observatory, Chinese Academy of Sciences Collaborators:
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Spectra and Temporal Variability of Galactic Black-hole X-ray Sources in the Hard State Nick Kylafis University of Crete This is part of the PhD Thesis.
Black hole accretion history of active galactic nuclei 曹新伍 中国科学院上海天文台.
Atomic Radiation Processes in AGN Julian Krolik Johns Hopkins University.
The X-ray Universe 2008, Granada, May A Jet-Emitting Disk model for the microquasar broad band emission G. Henri Coll. P.O Petrucci, J. Ferreira,
Global 3D MHD Simulations of Optically Thin Black Hole Accretion Disks
Magnetically Supported Black Hole Accretion Disk and Its Application to State Transition of Black Hole Candidate Hiroshi Oda (CfA/Chiba Univ.) M. Machida.
The central engine: relativistic effects Giovanni Miniutti AGN IX – Ferrara – May 2010.
A new model for emission from Microquasar jets Based on works by Asaf Pe’er (STScI) In collaboration with Piergiorgio Casella (Southampton) March 2010.
Accretion onto Black Hole : Advection Dominated Flow
A deep view of the iron line and spectral variability in NGC 4051 James Reeves Collaborators:- Jane Turner, Lance Miller, Andrew Lobban, Valentina Braito,
Broad iron lines from accretion disks K. Iwasawa University of Cambridge.
IXO and strong gravity Measuring the black hole spin IXO and strong gravity Measuring the black hole spin GiorgioMatt Giorgio Matt (Dipartimento di Fisica.
A Dynamic Model of Magnetic Coupling of a Black Hole with its surrounding Accretion Disk Huazhong University of Science & Technology ( , Beijing)
Accretion #3 When is the thin disk model valid? Reynolds number, viscosity Time scales in disk BH spectra Using X-ray spectra to determine BH mass and.
Thermal Equilibria of Magnetically Supported Black Hole Accretion Disks Table of Contents Introduction: Review of the Bright/Hard state of BHBs Candidate.
Global MHD Simulations of State Transitions and QPOs in Black Hole Accretion Flows Machida Mami (NAOJ) Matsumoto Ryoji (Chiba Univ.)
Reverberation mapping with eXTP
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
Thermal Equilibria of Magnetically Supported Black Hole Accretion Disks Table of Contents Introduction: Bright/Hard state observed in BHBs Purpose: To.
The X-ray Universe Granada
RXTE Spectral Observations of the Galactic Microquasar GRO J1655-40
NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc
Correlation Time Scales of the X-ray Flux in Low Mass X-ray Binary
Toward understanding the X-ray emission of the hard state of XTE J
Potential Gamma-ray Emissions from Low-Mass X-ray Binary Jets
Jingwei Hu
Presentation transcript:

Inner Cool Disks in the Low/Hard State of Accreting Black Holes 刘碧芳云南天文台 In collaboration with R.E. Taam, F. Meyer, and E. Meyer-Hofmeister

黑洞 X- 射线双星的光谱态 - 高态和低态 高态软谱 低态硬谱 log ν f ν log hν soft (high) state blackbody spec. with kT ~ 1 keV hard (low) state power-law, f ν ∝ ν -α with α ~ 0.7 cutoff at ~ 100 keV 标准吸积盘 ADAF

高、低态的吸积几何与模型 高低态转化发生在约 0.02 爱丁顿光度 ADAF

Interpreting the state transition m<0.02, RIAF-dominant accretion Hard spectral state m>0.02, Disk-dominant accretion Soft spectral srtate Transition rate: Transition is thought to be the consequence of the disk corona interaction.

New observation feature at low states Evidence pointing to possible presence of a cool inner disk in low hard states of BH transients GX339-4 ( Miller et al. 2006, ApJ 652, L113) X-ray luminosity (3-100keV) of 0.05 Eddington luminosity Disk component of 0.3keV from region around ISCO A broad iron line required to fit the spectrum Swift J (Miller et al. 2006, ApJ 653,525) X-ray luminosity (0.5-10keV) of Eddington luminosity Disk component of 0.2keV from region around ISCO

New observation feature at low/states GX339-4 ( Tomsick et al ApJ in press) X-ray luminosity (1-100keV) of Eddington luminosity Disk component of 0.201keV from region around ISCO A broad iron line required to fit the spectrum and X-ray luminosity (1-100keV) of Eddington luminosity Disk component of 0.165keV from region around ISCO A broad iron line required to fit the spectrum New observations: (Ramadevi et al. 2007;Rykoff et al.2007;Tomsick et al. 2008) Difficult to be explained by the standard accretion picture in BH transient systems

Previous disk-corona evaporation model At low states, disk vanishes in the dominant evaporation region, instead an ADAF is the dominant accretion process. An inner disk disappears within its viscous time by accretion As a consequence, the accretion flow is Inner ADAF +outer disk (Meyer, Liu, Meyer-Hofmeister, 2000, A&A) BH ADAF DISK

The new model To maintain the inner disk existing longer than the viscous time, continuous mass feeding to the inner disk is needed. One potential possibility for maintenance of the inner disk is coronal mass continuously condensing into the inner disk. Can mass condense from the corona to the disk at low hard states? Inner disk The mass flow Outer disk corona The energy flow conduction BH Comptonization Coronal gap

Our model: assumptions and aims Consider an ADAF + cool disk at low state in the inner region Study the interaction between the disk and the overlying ADAF To check Could an inner disk exist at low state? Under what condition? How strong is the inner disk?

ADAF 与吸积盘的相互作用

The ADAF above a cool disk ADAF structure is determined by model parameters, i.e. viscosity, BH mass, accretion rate except for the electron temperature. Electron temperature in the ADAF is determined by the energy balance Vertical heat conduction + Compton scattering (of the disk photons) = heating by coulomb collisions with ions. Conductive flux to the transition layer is calculated with the known ADAF structure.

The radiating layer The coupling of ions and electrons The energy balance in the radiating layer

Condensation or evaporation? In the transition/radiation layer the energy balance: Enthalpy flux+ conductive flux=radiation flux Local evaporation/condensation rate With F c ADAF and the function of viscosity, BH mass, accretion rate and radius. If evaporation; If condensation C=1 determines the critical radius for condensation and hence the inner disk size.

Numerical results Condensation can occur in the innermost region at low hard states in a certain parameter range The condensation region is determined by The inner disk size depends α, m, and the accretion rate The mass flow rate in the inner disk is the integral of local condensation rate, determined also by α, m, and the accretion rate. The disk effective temperature depends on α, m, and the accretion rate

Model predictions Model predicts the inner disk size, the maximal disk temperature, the disk luminosity, the coronal luminosity, and the ratio of disk and corona luminosity as functions of viscous, BH mass, accretion rate

Comparison with Observations GX339-4 Input parameters From Observation (Miller et al. 2006): m=10, L/L Edd =0.03, disk temperature kT=0.3keV, Optional:α =0.3 Model predictions Compton dominant cooling Inner disk size: r d =66 L disk /L ADAF =12.7% accretion rate=0.037, producing L/L Edd =0.03 kT eff =0.16keV

Comparison with observations J Input parameters From Observation (Miller et al. 2006): m=10, L/L Edd =0.01(extrapolation), Soft component kT=0.2keV Optional:α=0.3 Model predictions Compton dominant cooling Inner disk size: r d =22 L disk /L ADAF =10% accretion rate=0.034 kT eff =0.115keV

The condensation rate as a function of accretion rate

内盘的大小

内盘的温度

内盘的相对强度

Fits to the observation of Tomsick et al. (2008)

A mass-independent process The model does not depend on the mass of black hole For the same accretion rate (in units of Eddington rate), the predicted condensation rate (in units of Eddington rate), inner disk size (in units of R S ), and luminosity (in units of L Edd ) do not depend on the mass of black hole except for the disk T eff. Applicable to AGNs Inner disk produces weak UV-Optical radiation Inner disk provides a natural site of cool material of Fe line emission

Conclusion An inner cool disk could exist in the low hard state of accreting black hole, fed by the coronal condensation The inner disk is much weaker than the ADAF, but it provides a site for cool materials close to BH, thus weak disk component and iron line Roughly a very weak disk could exist at luminosity as low as

Future work Global solution The model in supermassive black holes? Any relation between inner disk and jet? Compact jets detected in GX339-4 (Tomsick et al. 2008)