Gamma-Ray Burst (GRB) Science with LST Kunihito Ioka (KEK) on behalf of the GRB subtask CTA LST meeting

Slides:



Advertisements
Similar presentations
Masanori Ohno (ISAS/JAXA). HXD: keV WAM: 50keV-5MeV XIS: keV X-ray Afterglow (XIS + HXD withToO) Wide energy band ( keV) Ultra-low.
Advertisements

Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.
Blazar Gamma-ray absorption by cosmic radiation fields GRB Fermi z~60-6 CTA Susumu Inoue (Kyoto University) with (more than) a little help from my friends.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
1 Understanding GRBs at LAT Energies Robert D. Preece Dept. of Physics UAH Robert D. Preece Dept. of Physics UAH.
Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.
April 1st, 2009SASS1 Gamma-Ray Bursts Aurélien Bouvier.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
Jet Models of X-Ray Flashes D. Q. Lamb (U. Chicago) Triggering Relativistic Jets Cozumel, Mexico 27 March –1 April 2005.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Gamma-Ray Bursts: The Biggest Explosions Since the Big Bang Edo Berger.
Gamma-Ray Bursts from Radiation-Dominated Jet? Kunihito Ioka (KEK) T. Inoue, Asano & KI, arXiv: KI, arXiv: Suwa & KI, arXiv:
Fermi GBM and LAT Gamma-ray Burst Highlights Judy Racusin (NASA/GSFC) on behalf of the Fermi GBM & LAT Teams Fermi Summer School 2013.
Radiative processes during GRB prompt emission
Gamma-Ray Burst Polarization Kenji TOMA (Kyoto U/NAOJ) Collaborators are: Bing Zhang (Nevada U), Taka Sakamoto (NASA), POET team Ryo Yamazaki, Kunihito.
High Energy Gamma-ray Emission from GRBs Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations August 26, ガンマ線バーストによるダークな宇宙の観測に向けたワーク.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
Unstable e ± Photospheres & GRB Spectral Relations Kunihito Ioka (IPNS, KEK) w/ K.Murase, K.Toma, S.Nagataki, T.Nakamura, M.Ohno, Suzaku team, P.Mészáros.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
1 Fermi Gamma-ray Space Telescope Observations of Gamma-ray Bursts Julie McEnery NASA/GSFC and University of Maryland On behalf of the Fermi-LAT and Fermi-GBM.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
Hot Relics in GRB Photosphere and GeV Photon Delay Kunihito Ioka (KEK)
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
A Unified Model for Gamma-Ray Bursts
GRBs, Falcone et al.Next Generation Gamma White Paper Mtg. (St. Louis 2006) GRB Science with Next Generation Instrument Abe Falcone, David Williams, Brenda.
Dermer Deciphering the Ancient Universe with GRBs, Kyoto, Japan 22 April Recent Progress in Theoretical Understanding of GRBs from Fermi LAT and.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
EMISSION OF HIGH ENERGY PHOTONS FROM GRB
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Moriond 2003Jordan GoodmanMilagro Collaboration VHE GRBs with Milagro The Milagro Detector Why look for VHE GRBs Milagrito Result –GRB a Milagro.
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Physical parameters of the relativistic shells in the GRBs S. Simić 1, L. Grassitelli 2 and L. Č. Popović 3,4 1) Faculty of Science, Department of Physics,
1 Observation of GRBs at tens of GeV with a full-coverage air shower array at m elevation Zhaoyang Feng (Speaker), Yiqing Guo, Yi Zhang, Hong.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
1 Gravitational waves from short Gamma-Ray Bursts Dafne Guetta (Rome Obs.) In collaboration with Luigi Stella.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Ariel Majcher Gamma-ray bursts and GRB080319B XXIVth IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy.
What we could learn from Cherenkov Telescope Array observations of Gamma-Ray Bursts Jonathan Granot Hebrew Univ., Tel Aviv Univ., Univ. of Hertfordshire.
Gamma-ray Bursts (GRBs)
High-Energy Emission from GRBs: expectations & first results from the Fermi Gamma-ray Space Telescope Jonathan Granot University of Hertfordshire (Royal.
X-Rays -> see you at COSPAR in July; also Kawai’s talk this conf.
High Energy Emission from Gamma-Ray Bursts
Limits on Lorentz Invariance Violation from Gamma-Ray Burst Observations by Fermi Gamma-Ray Space Telescope Jonathan Granot University of Hertfordshire.
Prompt Emission of Gamma-ray Bursts
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Andrei M. Beloborodov Columbia University
Presentation transcript:

Gamma-Ray Burst (GRB) Science with LST Kunihito Ioka (KEK) on behalf of the GRB subtask CTA LST meeting

GRB science with LST – Lower limit on the bulk Lorentz factor G>1000 is important, usually not exp cutoff, not necessarily the same region – Emission mechanism: afterglow/prompt? Lepton(syn?/IC?)/hadron? Spec: max synchro, IC component, Tempral: time-resolved Long obs: early afterglow, Early obs: GeV onset delay (w/ precursor) – Probing EBL, High-z: LIV? Axion?, First star, ISM B – LIV (with CTA only) Best scenario: Energy is dominated by TeV, no cutoff Lorentz factor>10000, Violate EBL + LIV! + ICECUBE&GW!

GRB Subtask inaugurated Mar. 18, 2010 Ryde, Felix Tam, P. H. Thomas Teshima, Masahiro Toma, Kenji Torres, Diego Wagner, Stefan Wijers, Ralph Yamazaki, Ryo Zech, Andreas Asano, Katsuaki Falcone, Abe Granot, Jonathan (Yoni) Hinton, Jim Horns, Dieter Inoue, Susumu Inoue, Yoshiyuki Ioka, Kunihito Kakuwa, Jun Lamanna, Giovanni Markoff, Sera Murase, Kohta O’Brien, Paul Raue, Martin You are welcome to join us Red: Leaders

GRB: Brightest Explosion = = Sun ~10 33 g GRB ~10 52 erg Atomic bomb In ~sec, GRB release energy Sun emit over lifetime GRB is the most luminous object E=mc 2 (by Einstein) ~1kg

GRB in a Nutshell Photo- sphere Internal Shock External Shock Time Flux ~2-100s ~0.01-2s Relativistic Jet  >100 ISM Long: Massive Stellar Collapse to BH/NS Short: NS-NS/BH merger? Magnetar? Long GRB? E kin ⇒ E  Afterglow Prompt

GRB Spectrum Band spectrum MeV E peak GeVTeVkeV F ∝ ∝ -0.5 CTA

Fermi Revolution ~30 GeV  from GRBs ⇒ Guaranteed source for CTA CTA GRB Abdo+ 09 GeV MeV keV

Fermi GRB Features 1. Extra spectral component 2. Temporally Extended Emission t −1.2±0.2 GRB up to >1000sec (But minor; majority is Band) GRB080916C keV MeV GeV

Pre-Fermi Era EGRET GRB (Hurley+94) –18GeV to 90min GRB (Gonzalez+03) –Temporary distinct HE AGILE GRB080514B (Giuliani+08) –Long-lived HE

New Features MeV GeV 3. GeV onset delay ~1 sec 4. Photosphere-like GRB B Abdo+ 09 ~ Black Body (But minor)

Detections as of GRB Angle from LAT Duration (or class) # of events > 100 MeV # of events > 1 GeV Delayed HE onset Long-lived HE emission Extra spectral comp. Highest photon Energy Redshift C ~ 60° long~ 100 ? ✔ X~ 600 MeV C 49° long14514 ✔✔ ?~ 13.2 GeV~ B 21° short~ 102 ✔✔ ?3 GeV A ~ 86° long————--— ~ 34° long~ 100XXX~ 1 GeV ~ 55° long~ 20> 0? ✔ ? ~ 64° long~ 20> 0? ✔ ? ~ 14° short> 150> 20 ✔ ✔ ✔ ~ 31 GeV ~ 15° long~ 20> 0? ✔ ? B 51° long> 200> 30 ✔ ✔ ✔ ~ 33 GeV ~ 52° long> 150> 50 ✔ ✔ ✔ ~ 20 GeV A ~ 13° long~ 20> 0? ? ? ~ 22° long~ 20> 0? ? ?~ 1.2 GeV A ~ 29° long~ 103? ? ?~ 2.2 GeV 11 © Ohno ~18 LAT+GMB (as of Jul 2010) : No HE cutoff

Exception Spectral  ~ if break is due to  E  (keV) GRB A Abdo+ 10

Implication of LAT Rate Comparable to estimates based on extrapolated BATSE GRBs no HE excess nor deficit (But, D. Band is OK Extra com. is rare Band+ 09

MAGIC Aleksic+ 10 Albert+ 06 MAGIC is consistent with the Band extrapolation

LST sensitivity Konrad Low energy (<200GeV) sensitivity is determined by LST

More  than Fermi Huge Effective Area – Fermi ~1m – CTA ~10 4 m Expected # of  – (0.1-1)  x (10 4 m 2 /1m 2 ) ~  per GRB ! : Great Advantage of CTA ~Background (but >30  CL) ~10kHz data taking is necessary

Extragalactic Background Light + Sensitivity –  GRB (100GeV) +  EBL (10eV) → e + + e - Energy Threshold Sensitivity [arbitrary] Signal (Schematic) Low Energy Sensitivity is CRUCIAL S. Inoue’s talk in this CTA meeting

Rough Event Rate Fermi LAT(GeV)/GBM(MeV) ~ 0.1 – ~1000/yr x (LAT/GBM) ~ 100/yr (Conservative) 1. GRB in the FOV ~100/yr x (Duty 0.1) x (FOV 5deg 2 ) ~ 0.03/yr 2. Follow-up – Extended GeV emission lasts for >1000 sec – ~20 sec slews are enough ~100/yr x (Duty 0.1) x (Zenith 0.1) ~ 1/yr GRB subtask (J. Kakuwa) is refining the estimate

Alert for Follow-up Swift up to ~2015? SVOM ~2015-? (approved) JANUS ~2016-?

Upcoming New Windows High Energy Gravitational Wave IceCube, KM3Net LIGO, Virgo, GEO, LCGT, AIGO, LISA, DECIGO/BBO

GRB Science with CTA 1. TeV calorimetry 2. Lower limit on the bulk Lorentz factor 3. Emission mechanism –Site? Leptonic(syn?/IC?)/Hadronic? 4. Cosmology – Probing EBL, B 5. Lorentz Invariance Violation (w/ CTA only) 6. …

1. TeV Calorimetry F Energetics may be determined by TeV  Short GRB Abdo+ 10 IC/Syn~  e /  B >1 E>10 52 erg ⇒ NS origin

2. Lower limit on bulk    →e + e - (  th ~MeV) – R~c  t ⇒  ~  T N  /4  R 2 ≫ 1 (  -ray cannot escape) Relativistic – R~  2 c  t – Blueshift –  ~  2  -2 ~  -6  >10 3 ! v> ×c  min Redshift But see also Li 08, Granot+08, Bosnjak+09, Aoi+KI 10, Zou+10

Conventional  max Fireball expands by radiation pressure In principle,  max ~ Energy / Mass Mass↓  max ↑… However, ⇒ Transparent before  ~  max Paczynski 86 Goodman 86 Shemi & Piran 90 Meszaros & Rees Matte r Radiation escapes

 →e + e - Annhilation Break Most likely Break (not Cutoff) Aoi+ 10, Li 08, Granot+08, Bosnjak+09 Time/Space integration smears the cutoff High-statistical data or Time-resolved spectrum is important

3. Emission Mechanism Photo- sphere Internal Shock External Shock Time Flux ~2-100s ~0.01-2s Relativistic Jet  >100 ISM E kin ⇒ E  Afterglow Prompt Site Mechanism –Syn? BB? Hadronic? Composition – p? Poynting?  ? Fe?

GeV Models External shock – long-lived, but not variable – Synchrotron (adiabatic/radiative shock) – SSC – External Compton of prompt  Internal shock – Synchrotron (peak at MeV) – not extra comp. – SSC – no low energy excess – Hadronic – proton luminosity is too large – External Compton of cocoon/photospheric  – May need fine tuning – Synchrotron (peak at GeV-TeV) w/ High 

 →e + e - annhilation break IC component Max. Synchrotron Energy (t acc =t cool ) Max. Synchrotron Energy (t acc =t dyn ) Possible TeV Features KI 10 How to separate these from EBL abs.?

EBL Y. Inoue+ 10 EBL has a large uncertainty Probe of early star/galaxy formation GRB z~8.2

Intergalactic B z=10 B= G Proga 95 Takahashi+ 10 TeV  Opt-UV e±e± CMB MeV  Delay B B GeV  Delay time ⇒ B But, could be contaminated by afterglow

LIV

Summary

Rondo+ arXiv:

~18 LAT+GMB GRBs (as of Jul 2010) No HE cutoff within the sensitivity Zhang+ 10

090902B Abdo+ 09