The regularization dependence on the phase diagram in the Nambu-Jona-Lasinio model Hiroaki Kohyama (CYCU) 2012.02.24

Slides:



Advertisements
Similar presentations
R. Yoshiike Collaborator: K. Nishiyama, T. Tatsumi (Kyoto University)
Advertisements

Kazuya Nishiyama Kyoto University Collaborator: Toshitaka Tatsumi, Shintaro Karasawa, Ryo Yoshiike Quarks and Compact Stars 2014 October 2014, PKU, Beijing.
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
The Phase Diagram of Nuclear Matter Oumarou Njoya.
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Chiral symmetry breaking and structure of quark droplets
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
O(N) linear and nonlinear sigma-model at nonzeroT within the auxiliary field method CJT study of the O(N) linear and nonlinear sigma-model at nonzeroT.
黄梅 Mei Huang Paramagnetic Meissner Effect in the g2SC Phase Mei Huang 黄 梅 Collaborate with I. Shovkovy ``The QCD-phase diagram”, Skopelos, May 29 – June.
Lang Yu Institute of High Energy Physics, CAS collaboration with Hao Liu, Mei Huang Induced local CP violation in chiral symmetric phase and inverse magnetic.
the equation of state of cold quark gluon plasmas
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
The XXV International Symposium on Lattice Field Theory 29 July - 5 August 2007, Regensburg, Deutschland K. Miura, N. Kawamoto and A. Ohnishi Hokkaido.
Free Quarks versus Hadronic Matter Xiao-Ming Xu. picture below the critical temperature T c.
Free Quarks and Antiquarks versus Hadronic Matter Xiao-Ming Xu Collaborator: Ru Peng.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Su Houng Lee with Kie Sang Jeong 1. Few words on Nuclear Symmetry Energy 2. A QCD sum rule method 3. Preliminary results Nuclear Symmetry Energy from QCD.
On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia Contents.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Importance of imaginary chemical potential for QCD phase diagram in the PNJL model Kouji Kashiwa H. Kouno A, Y. Sakai, T. Matsumoto and M. Yahiro Recent.
Imaginary Chemical potential and Determination of QCD phase diagram
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T 2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Su Houng Lee Quark condensate and the ’ mass  ‘ at finite temperature 1.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
P. Gubler, K. Morita, and M. Oka, Phys. Rev. Lett. 107, (2011) K. Suzuki, P. Gubler, K. Morita, and M. Oka, arxiv: [hep-th]
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Hadron-Quark phase transition in high-mass neutron stars Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina) Milva Orsaria (FCAGLP, CONICET,
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Probing QCD Phase Diagram with Fluctuations of conserved charges Krzysztof Redlich University of Wroclaw & EMMI/GSI QCD phase boundary and its O(4) „scaling”
Relativistic Heavy Ion Collider and Ultra-Dense Matter.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Chiral symmetry breaking and low energy effective nuclear Lagrangian Eduardo A. Coello Perez.
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
Lattice QCD at finite density
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
High-p T Particles and RHIC Paradigm of Jet Quenching Ahmed M. Hamed NN2012 The 11 th International Conference on Nucleus-Nucleus Collisions 1.
1 Nontopological Soliton in the Polyakov Quark Meson Model Hong Mao ( 毛鸿 ) Department of Physics, Hangzhou Normal University With: Jinshuang Jin ( HZNU.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Raju Venugopalan Brookhaven National Laboratory
Tomohiro Inagaki Hiroshima University
The Study of the Possible Phase Diagram of Deconfinement in FL Model
Finite Density Simulation with the Canonical Ensemble
Properties of the Quark-Gluon Plasma
Color Superconductivity in dense quark matter
HP-SEE DISSEMINATION & TRAINING Tirana, 27 March 2012
Compact stars in the QCD phase diagram II,2009
QCD at very high density
A possible approach to the CEP location
Theory on Hadrons in nuclear medium
Presentation transcript:

The regularization dependence on the phase diagram in the Nambu-Jona-Lasinio model Hiroaki Kohyama (CYCU)

1.Introduction 2.NJL model 3.Regularization 4.Phase diagram Contents

QCD phase diagram Density Temperature Hadron Quark Gluon Plasma Color Super CP? (Exp.) (Lattice) ? Model studies

current quark constituent quark Observed quark mass

gluon Shifman, Vainshtein, Zacharov, Nucl. Phys. B147 (1979) 385. Energy of Gluons? current quark constituent quark

2. NJL model

Lagrangian of NJL

Replace just a number! E. Farhi, L. Susskind, Phys. Rep. 74 (1981) 277. Contact interaction

Chiral condensate Constituent quark mass Mean Field Approximation

After a bit of algebra, Effective Potential

Regularizations Regularization Dimensional: Cutoff: Finite Potential! Divergent contribution

Model parameters

Parameter sets

The condition: Stable vacuum

Chiral condensate current quark constituent quark Constituent picture in NJL

4. Phase diagram

Constituent mass

Drawing phase diagram

Resulting phase diagram

Numerical results Diagrams with various parameter sets

Comparison with Cutoff Striking qualitative difference!

Consideration (1) Strong first order seen in the dimensional Dimensional Cutoff Due to the different shape of the potential

Consideration (2) Strong first order seen in the dimensional Because the KMT term drives first order

Summary - Drew ph. diagram - Compared results with Cutoff ones - Gave numerical considerations Further studies obviously needed (Neutron star, Color superconductivities …)