North-West University, Potchefstroom November 18, 2011 Ground-Based Cosmic Ray Detectors for Space Weather Applications John W Bieber University of Delaware,

Slides:



Advertisements
Similar presentations
THREE-DIMENSIONAL ANISOTROPIC TRANSPORT OF SOLAR ENERGETIC PARTICLES IN THE INNER HELIOSPHERE CRISM- 2011, Montpellier, 27 June – 1 July, Collaborators:
Advertisements

Cosmic Ray Using for Monitoring and Forecasting Dangerous Solar Flare Events Lev I. Dorman (1, 2) 1. Israel Cosmic Ray & Space Weather Center and Emilio.
NMDB Kiel Meeting, 3-5/12/2008 On the possibility to use on-line one-minute NM data of NMDB network and available from Internet satellite CR data for.
4/18 6:08 UT 4/17 6:09 UT Average polar cap flux North cap South cap… South cap South enter (need to modify search so we are here) South exit SAA Kress,
Study of Galactic Cosmic Rays at high cut- off rigidity during solar cycle 23 Partha Chowdhury 1 and B.N. Dwivedi 2 1 Department of Physics, University.
Petukhov I.S., Petukhov S.I. Yu.G. Shafer Institute for Cosmophysical Research and Aeronomy SB RAS 21st European Cosmic Ray Symposium in Košice, Slovakia.
1 The QinetiQ Atmospheric Radiation Model and Solar Particle Events Clive Dyer, Fan Lei, Alex Hands, Peter Truscott Space Division QinetiQ, Farnborough,
Cosmic Rays and Space Weather Erwin O. Flückiger Laurent Desorgher, Rolf Bütikofer, Benoît Pirard Physikalisches Institut University of Bern
Paul Evenson, Waraporn Nuntiyakul,
Cosmic rays in solar system By: Tiva Sharifi. Cosmic ray The earth atmosphere is bombarded with the energetic particles originating from the outer space.
Neutron Monitor Detection Efficiency John Clem University of Delaware 2004 Annual CRONUS Collaboration Meeting.
Solar Energetic Particles -acceleration and observations- (Two approaches at the highest energy) Takashi SAKO Solar-Terrestrial Environment Laboratory,
Workshop on Extension of the European Neutron Monitor Database October 13-15, 2010 Newark, Delaware Spaceship Earth John W. Bieber Bartol Research Institute.
SHINE 2008 June, 2008 Utah, USA Visit our Websites:
Solar Extreme Events 2005, Armenia September 2005 Extreme Ground Level Enhancements Observed by Spaceship Earth John W. Bieber University of Delaware,
Radiation conditions during the GAMMA-400 observations:
Efficacy of Muon Detection for Solar Flare Early Warning Canadian Muon Workshop St-Émile-de-Suffolk, Québec, Canada October 17-19, 2011 NRCan DND Carleton.
CME-GEOMETRY AND COSMIC-RAY ANISOTROPY OBSERVED BY A PROTOTYPE MUON DETECTOR NETWORK K. Munakata 1, T. Kuwabara 1, J. W. Bieber 2, P. Evenson 2, R. Pyle.
SHINE Meeting, July 31 – August 4, 2006 Neutron Monitor Observations of the January 20, 2005 Ground Level Enhancement John W. Bieber 1, John Clem 1, Paul.
Spring 2004 AGU Meeting, Montreal SH33A-02 UNUSUAL FEATURES OF THE OCTOBER 28, 2003 GROUND LEVEL ENHANCEMENT John W. Bieber 1, Paul Evenson 1, Roger Pyle.
Ground Level Enhancement of May 17, 2012 Observed at South Pole SH21A-2183 Takao Kuwabara 1,3 ; John Bieber 1 ; John Clem 1,3 ; Paul Evenson 1,3 ; Tom.
Title Relativistic Solar Particle Events of 19 th Solar Cycle: Modeling Study Yu.V. Balabin, E.V. Vashenuyk, B.B. Gvozdevsky Polar Geophysical.
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
INTERNATIONAL STANDARDIZATION ORGANIZATION TECHNICAL SPECIFICATION Space Environment (Natural and Artificial) Probabilistic model of fluences and.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
Cosmic-Ray Induced Neutrons: Recent Results from the Atmospheric Ionizing Radiation Measurements Aboard an ER-2 Airplane P. Goldhagen 1, J.M. Clem 2, J.W.
February 7, Antarctica and the Global Neutron Monitor Network Paul Evenson University of Delaware Department of Physics and Astronomy.
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
Paul Evenson June CAU Kiel April 20, 2010 Solar Physics with the IceTop Air Shower Array Paul Evenson University of Delaware Department of Physics.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
By Dr. A. Mahrous Helwan University - EGYPT By Dr. A. Mahrous Helwan University - EGYPT.
Extreme Space Weather Project, Ottawa October 17-19, 2011 Ground-Based Cosmic Ray Detectors for Space Weather Applications John W Bieber University of.
1 IGY The ALERT signal of ground level enhancements of solar cosmic rays: physics basis, the ways of realization and development Anashin V., Belov A.,
Uppsala University June 9, 2009
High-Energy Ground Level Events Measured with Neutron Monitors and the Milagro Instrument James M. Ryan University of New Hampshire and the Milagro Collaboration.
NMDB - the European neutron monitor database Karl-Ludwig Klein, for the NMDB consortium.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
April 4, Neutron Monitor: The Once and Future CosRay Paul Evenson University of Delaware A-118-S.
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
APRIM Chiang Mai July 28, 2011 Heliospheric Physics with IceTop Paul Evenson University of Delaware Department of Physics and Astronomy.
Radiation Storms in the Near Space Environment Mikhail Panasyuk, Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University.
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Athens University – Faculty of Physics Section of Nuclear and Particle Physics Athens Neutron Monitor Station Study of the ground level enhancement of.
Fall 2004 AGU Meeting, San Francisco SH31B-07 GROUND-BASED COSMIC RAY DETECTORS FOR SOLAR-TERRESTRIAL RESEARCH AND SPACE WEATHER FORECASTING John W. Bieber.
Neutron Monitor Community Workshop Current and Future State of the Neutron Monitor Network October 24-25, 2015 Honolulu Domestic Perspective on Neutron.
It is considered that until now in the 24th cycle of solar activity 2 ground level enhancements of solar cosmic rays (GLEs) are registered: on May 17,
February 7, Long Term Decline of South Pole Neutron Monitor Counting Rate – A Possible Magnetospheric Interpretation Paul Evenson, John Bieber,
1 Cosmic Ray Modulation Over the 22 Year Magnetic Cycle Observed by Neutron Monitors Pierre-Simon Mangeard 1,2, David Ruffolo 2,3, Alejandro Sáiz 2,3,
Title Relativistic Solar Cosmic Ray Dynamics in Large Ground Level Events E.V. Vashenuyk, Yu.V. Balabin, B.B. Gvozdevsky Polar Geophysical Institute Apatity,
Extreme Event Symposium 2004 MAGNETOSPHERIC EFFECT in COSMIC RAYS DURING UNIQUE MAGNETIC STORM IN NOVEMBER Institute of Terrestrial Magnetism,
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
Paul Evenson University of Delaware
Paul Evenson University of Delaware
Pradiphat (ฝุ่น) Muangha2 David J Ruffolo2
Presenter: Paul Evenson
Early Alert of Solar Radiation Hazard
Development of a GLE Alarm System Based Upon Neutron Monitors
Antarctica and the Global Neutron Monitor Network
Alexander Mishev and Ilya Usoskin
R. Bucˇık , K. Kudela and S. N. Kuznetsov
Forbush Decreases and Interplanetary Coronal Mass Ejections at Earth and Mars Mark Lester1, Beatriz Sanchez-Cano1, Emma Thomas1, Adam Langeveld1, Jingnan.
University of Delaware
. Multipoint, galactic cosmic ray observations associated with a series of interplanetary coronal mass ejections: the case study of June 2015 A. Papaioannou1,
Alexander Mishev and Ilya Usoskin
Alexander Mishev & Ilya Usoskin
Application of neutron monitor data for space weather
NMDB - the European neutron monitor database
A. Mishev, I.Usoskin, S. Tuohino & A. Ibragimov
Presentation transcript:

North-West University, Potchefstroom November 18, 2011 Ground-Based Cosmic Ray Detectors for Space Weather Applications John W Bieber University of Delaware, Bartol Research Institute and Department of Physics and Astronomy Visit our Website: To receive alerts of extreme solar energetic particle events:

INTRODUCTION

OBSERVATION OF COSMIC RAYS WITH GROUND-BASED DETECTORS Ground-based detectors measure byproducts of the interaction of primary cosmic rays (predominantly protons and helium nuclei) with Earth’s atmosphere Two common types: –Neutron Monitor Typical energy of primary: ~1 GeV for solar cosmic rays, ~10 GeV for Galactic cosmic rays –Muon Detector / Hodoscope Typical energy of primary: ~50 GeV for Galactic cosmic rays (surface muon detector)

WHAT IS A NEUTRON MONITOR ? A large instrument, weighing ~32 tons (standard 18-tube NM64) Detects secondary neutrons generated by collision of primary cosmic rays with air molecules Detection Method: –Older type – proportional counter filled with BF 3 : n + 10 B → α + 7 Li –Modern type – counter filled with 3 He: n + 3 He → p + 3 H Neutron Monitor in Nain, Labrador Construction completed November 2000

SPACESHIP EARTH VIEWING DIRECTIONS Optimized for solar cosmic rays 9 stations view equatorial plane at 40-degree intervals Thule, McMurdo, Barentsburg provide crucial 3-dimensional perspective Solid symbols denote station geographical locations. Average viewing directions (open squares) and range (lines) are separated from station geographical locations because particles are deflected by Earth's magnetic field. STATION CODES IN: Inuvik, Canada FS: Fort Smith, Canada PE: Peawanuck, Canada NA: Nain, Canada BA: Barentsburg, Norway MA: Mawson, Antarctica AP: Apatity, Russia NO: Norilsk, Russia TB: Tixie Bay, Russia CS: Cape Schmidt, Russia TH: Thule, Greenland MC: McMurdo, Antarctica

CORONAL MASS EJECTION EFFECTS AT EARTH Prompt Effect: Delayed Effect: Energetic Particles (GLE) Geomagnetic Disturbance Energetic particles (~ 1 GeV) accelerated near Sun Occurs 5-20 min after CME lift-off Charged particles follow magnetic field line Particles arrive at Earth minutes later, if Earth is near the right magnetic field line Interplanetary CME arrives at 1 AU 18 hours to 4 days later Impact of the ICME plasma with Earth’s magnetic field causes a geomagnetic disturbance The ICME suppresses Galactic cosmic rays, an effect called a Forbush decrease

TOPIC 1 Automated GLE Alert system

SPACESHIP EARTH STATIONS ARE WELL SITUATED TO ALERT / MONITOR RADIATION HAZARD ON POLAR AIRLINE ROUTES Line shows Chicago-Beijing great circle route. Squares are Spaceship Earth stations. (Two in Antarctica are not shown.)

Neutron Monitors Can Provide the Earliest Alert of a Solar Energetic Particle Event In the January 20, 2005 GLE, the earliest neutron monitor onset preceded the earliest Proton Alert issued by the Space Environment Center by 14 minutes.

In this study, a GLE Alert is issued when 3 stations of Spaceship Earth (plus South Pole) record a 4% increase in 3-min averaged data With 3 stations, false alarm rate is near zero GLE Alert precedes SEC Proton Alert by ~ min

GLE Alarm Is Now Operating Developed primarily by Dr Takao Kuwabara To receive automated e- mail alerts of possible GLE, send request to: … or visit the Website shown at left: ~takao/neutronm/glealarm/ Index.html

TOPIC 2 Realtime Mapping of Radiation Intensity in Polar Regions January 20, 2005 GLE and December 13, 2006 GLE as concrete examples

MAPPING RADIATION INTENSITY IN POLAR REGIONS: METHOD First, the asymptotic viewing directions of the neutron monitor array are determined, and the cosmic ray pitch angle distribution (here modeled as a constant plus exponential function of pitch angle cosine) is computed in GSE coordinates by least-square fitting To form the map, a preliminary computation is done at each grid point to determine if a 1 GV proton is “allowed.” If it is, then that location is considered to have a geomagnetic cutoff below the atmospheric cutoff, and the grid point is included in the map. The asymptotic viewing direction at the center of the grid point is then computed in GSE coordinates for a median rigidity particle, permitting the “pitch angle” for the location to be determined. From the model pitch angle distribution, the predicted intensity for that grid point is computed and plotted by color code.

TOPIC 3 Neutron Monitor Prediction of Solar Energetic Particle Energy Spectra

ENERGY SPECTRUM: POLAR BARE METHOD South Pole station has both a standard neutron monitor (NM64) and a monitor lacking the usual lead shielding (Bare). The Polar Bare responds to lower particle energy on average. Comparison of the Bare to NM64 ratio provides information on the particle spectrum. This event displays a beautiful dispersive onset (lower panel), as the faster particles arrive first. Later, the rigidity spectrum softens to ~P – 5 (where P is rigidity), which is fairly typical for GLE 2.

Example of Prediction Method Energy spectrum of the SPE of July 14, 2000 (Bastille event) : Spectrum Derived from NM Observations at the Time of the Neutron Monitor Peak. ● : 8 GOES Channels Plotted at the Mean Energy of the Channel at the Time of the Peak for the Corresponding GOES Channel. ◊ : Predicted Proton Intensity of GOES Channels, Derived by Extrapolating the NM Spectrum Downward in Energy.

3. Comparison of Peak Intensities Observed by GOES & Predicted from Spectra Obtained at the (earlier) GLE Peak

Logarithmic Correlation Coefficients Between Observed & Predicted Peak Intensity of Proton Channels Between Observed Fluence & Predicted Intensity of Proton Channels Proton Channel Energy Range (MeV) Peak Intensity Fluence Logarithmic P P P P P P P P11>

TOPIC 4 Earth as a Giant Magnetic Spectrometer A High-Altitude Array Spanning a Range of Cutoffs

WHY HIGH-ALTITUDE MONITORS ? REASON: ENHANCED SENSITIVITY Altitude (ft)Pressure (mm Hg)Galactic Cosmic Rays Relative Count Rate Solar Cosmic Rays Relative Count Rate , , , , A 3-tube neutron monitor at South Pole (510 mm Hg) has sensitivity to solar energetic particles equivalent to a 90-tube monitor at sea level !

GALACTIC COSMIC RAY (GCR) SPECTRUM: A NEW MEASUREMENT APPROACH An array of high-altitude monitors at different cutoffs can measure the differential intensity in absolute units, if the monitors are accurately intercalibrated Each monitor provides a measure of the differential intensity between its own cutoff and the next higher cutoff in the array From Moraal et al. (2000)

TWO ANCHORS FOR A HIGH-ALTITUDE GCR ARRAY Low-Cutoff (or No Cutoff) Monitor at High Latitude, e.g., Pole or Summit Below: South Pole Monitor at Sunset, High-Cutoff (17 GV) Monitor in Thailand Below: Princess Sirindhorn Neutron Monitor. Dedicated January, 2008

A realtime display (stackplot) of time variations observed at stations over a range of cutoffs is available now edu/~pyle/Spectral.png Shown at left is a screen capture that includes the large Forbush decrease that began on September 26, 2011

TOPIC 5 Loss Cone Anisotropy Warns of Approaching ICME

Loss Cone Precursor to an ICME Key references: Nagashima et al. [1992], Munakata et al. [2000], Leerungnavarat et al. [2003] Intensity deficit confined in a cone Figure credit: K. Munakata

Loss Cones Can Be Seen in a “Bubble Plot” in Large Events In this bubble plot, each circle represents a directional channel in a muon telescope Circle is plotted at time of observation (abscissa) and pitch angle of viewing direction (ordinate) Solid circles indicate a deficit intensity relative to omnidirectional average, and open circles indicate excess intensity; scale is indicated at right of plot Loss cone is evidenced by large solid circles concentrated near 0 O pitch angle Figure adapted from Munakata et al., J. Geophys. Res., 105, , 2000.

SUMMARY The Role of Neutron Monitor Arrays for Space Weather Forecasting and Specification Automated GLE Alert System: Operational Now! Realtime Mapping of Radiation Intensity in Polar Regions Prediction of SEP Energy Spectrum (Polar Bare Method) Realtime Specification of Galactic Cosmic Ray Spectrum (High-Altitude Array across a Range of Cutoffs) Loss Cone Prediction of Approaching ICME

Realtime Space Weather Websites Operated by University of Delaware / Bartol Research Institute –Home page: Links to all the other sites listed below htmlhttp:// html –Instructions for subscribing to GLE alert list –Stackplot of time variations observed by neutron monitors at different cutoffs –Bubble Plots for Loss Cone Identification, Bidirectional Streaming, Many More Plots – Neutron Monitor Data and Muon Detector Data Displayed Side-by-Side –Summary rates from the IceTop detector at South Pole – Not very user-friendly (yet)