2012.07.19 HE 1.5 15. Aug 1 Cosmic-ray Electrons and Atmospheric Gamma-rays in 1-30 GeV Observed with Balloon-borne CALET Prototype.

Slides:



Advertisements
Similar presentations
ELENA VANNUCCINI ON BEHALF OF PAMELA COLLABORATION Measurement of the Hydrogen and Helium absolute fluxes with the PAMELA experiment.
Advertisements

GLAST The GLAST Balloon Flight experiment was performed with the collaboration of NASA Goddard Space Flight Center, Stanford Linear Accelerator Center,
AMS Discoveries Affecting Cosmic-Ray SIG Priorities Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland AAS HEAD.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
An accelerator beam of muon neutrinos is manufactured at the Fermi Laboratory in Illinois, USA. The neutrino beam spectrum is sampled by two detectors:
The performance of LHCf calorimeter was tested at CERN SPS in For electron of GeV, the energy resolution is < 5% and the position resolution.
HAWC Gus Sinnis VHE Workshop UCLA October, 2005 HAWC: A Next Generation Wide-Field VHE Gamma-Ray Telescope.
The LHCf experiment Hiroaki MENJO INFN Firenze on behalf for the LHCf collaboration at 29 March 2010, MC4LHC.
GLAST Simulations Theodore E. Hierath Louisiana State University August 20, 2001.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
Paul Evenson January Low Energy Electron Observations (LEE, AESOP and the Historical Context) Paul Evenson and John Clem University of Delaware.
Shuang-Nan Zhang (张双南) Center for Particle Astrophysics 粒子天体物理中心
2009/11/12KEK Theory Center Cosmophysics Group Workshop High energy resolution GeV gamma-ray detector Neutralino annihilation GeV S.Osone.
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
July 21, 2010 COSPAR 1 CALET CALET Mission for Japanese Experiment Module on ISS Shoji Torii on behalf of the CALET Mission Team Waseda University & JAXA/Space.
Progress of HERD Simulation Ming XU ( 徐明 ), IHEP HERD 2 nd Workshop, IHEP, Beijing 1.
Direct measurements of cosmic rays in space
March 3, 2010 HEAD Electron & Positron Observation Evolution of the Universe Dark Matter Origin ( ⅰ ) Monoenergetic: Direct Production of e+e- pair.
Joachim Isbert PAMELA 2009 Observations of High Energy Cosmic Ray Electrons by the ATIC Balloon Experiment 1.Louisiana State University, Department of.
Tsuyoshi Mase for the LHCf collaboration
Detection of cosmic rays in the SKALTA experiment Marek Bombara (P. J. Šafárik University Košice), Kysak, August 2011.
Keep the standard candle of electron observations burning Provide an intercalibration with PAMELA and AMS Search for the origin of the turn up in the low.
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
Cosmic-Ray Induced Neutrons: Recent Results from the Atmospheric Ionizing Radiation Measurements Aboard an ER-2 Airplane P. Goldhagen 1, J.M. Clem 2, J.W.
1 Observations of Charge Sign Dependence in Solar Modulation Kiruna 2011 LEE Low Energy Electrons P.I.C. June 30, 2010 John Clem and Paul Evenson.
O After integration and test at SLAC and GSFC, BFEM was shipped to the National Scientific Balloon Facility (NSBF) at Palestine, Texas. The experiment.
Sep. 14, 2007TAUP071 The CALET Mission for Detection of Cosmic Ray Sources and Dark Matter Shoji Torii for the CALET Collaboration Research Institute for.
The AMS Transition Radiation Detector and the Search for Dark Matter Gianpaolo Carosi Lab for Nuclear Science, MIT The AMS Collaboration Lake Louise Winter.
1 PEBS Prototype PERDaix was launched in October 2010 from Kiruna, Sweden.
Spectra of the Thunderstorm Correlated Electron and Gamma-Ray Measured at Aragats Bagrat Mailyan and Ashot Chilingarian.
Electron Observation : Past, Present and Future S.Torii : Waseda University (Japan) Rome PAMELA Workshop
THE GAMMA-400 PROJECT Direct measurements of the primary gamma- radiation in the energy range 30 GeV – 1 TeV GAMMA-400 COLLABORATION: Lebedev Physical.
Aa GLAST Particle Astrophysics Collaboration Instrument Managed and Integrated at SLAC/Stanford University The Gamma-ray Large Area Space Telescope (GLAST)
LHCf Report Takashi SAKO for the LHCf Collaboration 18-Dec-2009 CERN Main Auditorium.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
RCCN International Workshop sub-dominant oscillation effects in atmospheric neutrino experiments 9-11 December 2004, Kashiwa Japan Input data to the neutrino.
GLAST Hiroshima University, ISAS Cosmic-Ray Source Generator Y.Fukazawa (Hiroshima U) M.Ozaki(ISAS) T.Mizuno(Hiroshima U) S.Hirano(Hiroshima U) T.Kamae(Hiroshima.
GLAST The GLAST Balloon Flight experiment was performed with the collaboration of NASA Goddard Space Flight Center, Stanford Linear Accelerator Center,
Study of high energy cosmic rays by different components of back scattered radiation generated in the lunar regolith N. N. Kalmykov 1, A. A. Konstantinov.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
High Energy cosmic-Radiation Detection (HERD) Facility onboard China’s Space Station Shuang-Nan Zhang ( 张双南 ) Center for Particle Astrophysics.
HE Aug The balloon-bone CALET prototype detector(bCALET) S. Ozawa , S. Torii , K. Kasahara , H. Murakami , Y. Akaike Y.
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
In high energy astrophysics observations, it is crucial to reduce the background effectively to achieve a high sensitivity, for the source intensity is.
Direct measurements of cosmic rays in space ROBERTA SPARVOLI ROME “TOR VERGATA” UNIVERSITY AND INFN, ITALY Vulcano Workshop 2014 Vulcano Island (Italy),
LHCf Detectors Sampling Calorimeter W 44 r.l, 1.6λ I Scintilator x 16 Layers Position Detector Scifi x 4 (Arm#1) Scilicon Tracker x 4(Arm#2) Detector size.
A complete simulation of cosmic rays access to a Space Station Davide Grandi INFN Milano, ITALY.
The Gulmarg Neutron Monitor Ramesh Koul Astrophysical Sciences Division Bhabha Atomic Research Centre Mumbai
OUTGOING NEUTRONS IN CALET CALET AIMS AT DETECTING UHE CR ELECTRONS HIGH REJECTION FACTOR FOR PROTONS/NUCLEI NEEDED POSSIBLE IMPROVEMENT RESPECT ‘STANDARD’
PoGO_G4_ ppt1 Study of BGO/Collimator Optimization for PoGO August 8th, 2005 Tsunefumi Mizuno, Hiroshima University/SLAC
1 Study of Data from the GLAST Balloon Prototype Based on a Geant4 Simulator Tsunefumi Mizuno February 22, Geant4 Work Shop The GLAST Satellite.
After integration and test at SLAC and GSFC, BFEM was shipped to the National Scientific Balloon Facility (NSBF) at Palestine, Texas. The experiment was.
Rita Carbone, RICAP 11, Roma 3 26/05/2011 Stand-alone low energy measurements of light nuclei from PAMELA Time-of-Flight system. Rita Carbone INFN Napoli.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
The CALET mission for high energy astroparticle physics on the International Space Station Kenji Yoshida for the CALET Collaboration Shibaura Institute.
O After the integration and test at SLAC/GSFC, BFEM was shipped to National Scientific Balloon Facility (NSBF) at Palestine, Texas. The experiments was.
Report of GLAST Balloon Flight October Annual meeting of Astronomical Society of Japan T. Mizuno and other GLAST Balloon Team
DAMPE: now in orbit G. Ambrosi – DAMPE coll.. DAMPE: now in orbit G. Ambrosi – DAMPE coll.
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
Experimental Method: 2 independent detectors on both sides of IP
The Transition Radiation Detector for the PAMELA Experiment
DAMPE: first data from space
Comparison of GAMMA-400 and Fermi-LAT telescopes
CALET-CALによる ガンマ線観測初期解析
Electron Observations from ATIC and HESS
Cosmic-Rays Astrophysics with AMS-02
Balloon observation of electrons and gamma rays with CALET prototype
Experimental Method: 2 independent detectors on both sides of IP
Analysis of GLAST Balloon Experiment Data
Presentation transcript:

HE Aug 1 Cosmic-ray Electrons and Atmospheric Gamma-rays in 1-30 GeV Observed with Balloon-borne CALET Prototype Detector T. Niita, S. Torii , S. Ozawa, K. Kasahara , H. Murakami , Y. Ueyama , D. Ito, M. Karube, K. Kondo, M. Kyutan (Waseda Univ.) Y. Akaike (ICRR / Tokyo Univ.) T. Tamura (Kanagawa Univ.) K. Yoshida (Shibaura Institute of Tech.) Y. Katayose (Yokohama National Univ.) Y. Shimizu (Space Environment Utilization Center / JAXA), H. Fuke (Institute of Space and Astronautical Science / JAXA) On behalf of bCALET Team Mysore, India PSB

Mysore, India2 Japanese Experiment Module (Kibo) International Space Station Cosmic Ray Sources Dark Matter annihilation or decay electron gamma nucleus e - & e + 2gamma CALET ~CALorimetric Electron Telescope~ CALET, a detector for high energy cosmic-ray electrons, gamma-rays and nuclei, will be installed on the Japanese Experiment Module Exposed Facility (JEM-EF) of the International Space Station (ISS) in 2014 for long-term observation (2-5 years). bCALET ~Balloon-borne CALET prototype~ We developed balloon-borne payloads to verify CALET capability by carrying out precursor flights for electron and gamma-ray observation. bCALET-1 : 1/12 prototype, observation in May 2006 bCALET-2 : 1/2 prototype, observation in August 2009 Electrons 1GeV-20TeV Nearby sources, Dark matter signatures, Particle transport, Solar physics Gamma-rays 10GeV-10TeV Dark matter signatures, Point sources, Diffuse gamma-rays, Bursts Nuclei 10GeV-1000TeV Particle transport, Acceleration Objectives CALET payload

Mysore, India3 bCALET Detector IMC TASC bCALET-1 Tungsten bCALET-2 bCALET detectors (both bCALET-1 and bCALET-2) have generally the same configuration as CALET, which is composed of an imaging calorimeter (IMC) and a total absorption calorimeter (TASC). IMC TASC Anti bCALET-1bCALET-2CALET IMC 1.3 r.l. (W 4 layers) SciFi 128mm x 4XY layers 3.5 r.l. (W 7 layers) SciFi 256mm x 8XY layers 3.0 r.l. (W 7 layers) SciFi 448mm x 8XY layers TASC 13.4 r.l. (BGO 4 logs x 6 layers) 13.4 r.l. (BGO 10 logs x 6 layers) 27.2 r.l. (PWO 16 logs x 12 layers) Trigger Plastic scintillator (S1, S2) & TASC top layer (BS) Plastic scintillator (S1,S2,Anti) & TASC top layer (BS) IMC dynode & TASC top layer SΩ21 cm 2 sr320 cm 2 sr1200 cm 2 sr

Mysore, India4 The Balloon Flight Observation Summary bCALET-1bCALET-2 Date 31, May, , Aug, 2009 Place SanrikuTaiki Level flight altitude 37km35km Duration 6 hours (37km level fright: 3.5hours) 4.5 hours (35km level flight: 2.5hours) Triggered event number Taiki, Hokkaido Latitude 42.4° Longitude 143.4° Rigidity cutoff 11.8GV Sanriku, Iwate Latitude 39.1° Longitude 141.8° Rigidity cutoff 13.3GV

Mysore, India5 Data Analysis 1MIP Distribution of ADC counts during muon- run (1 BGO log) Calibration by cosmic-ray muons All of the 4096 scintillating fibers and the 60 BGO scintillators were calibrated using muon data taken before the launch. Example of muon track reconstruction for position correction Electron-triggered events Gamma-triggered events Energy estimation Track reconstruction Proton rejection by lateral spread in TASC and IMC < 6.7GeV > 6.7GeV Proton rejection by lateral spread in TASC and shower maximum depth Energy estimation Correction of gamma-ray contaminant Correction of electron contaminant Electron spectrumGamma-ray spectrum Flight data Position correction The accurate positions of scintillating fibers were estimated from the muon track in IMC.

Mysore, India6 Detector Performance (Monte-Carlo Simulation) electrons : 1.4 ° gamma-rays : 1.6 ° Angular Resolution : The shower axis was determined by the least-square fitting of shower cores in IMC. Example of electron track reconstruction (simulation event) Incident direction & Reconstructed shower axis Geometrical condition We selected the events which pass through the top of the detector and the bottom of the third BGO layer so as to retain good energy resolution. Energy Resolution : The incident energy was estimated by the sum of the deposited energy in TASC. electrons : 7.4% 10GeV) gamma-rays : 6.4% 10GeV)

Mysore, India7 e remain : 81.0% p contami :11.6% e retain : 82.2% p contami : 6.1% Detector Performance (Monte-Carlo Simulation) Proton rejection power : We used lateral spread and shower maximum depth to reject proton background from electron-like events. electronproton concentratedbroad Shower Maximum ■ Low energy electrons (< 6.7 GeV) correlation map of lateral spread in TASC and energy concentration in IMC ■ High energy electrons (> 6.7 GeV) correlation map of lateral spread in TASC and shower maximum depth parameter1. Lateral spread parameter2. Shower maximum depth Transition curve

Mysore, India8 Electron spectrum Gamma-ray spectrum Observed Energy Spectra of Electrons and Gamma-rays Simulation by COSMOS v7.49 (1) Primary particles : electron : BETS, PPB-BETS proton, He : AMS-01 C, N, O, Fe : HEAO, ATIC, CRN (2) Solar modulation effect : assume modulation factor Φ as 0.6 GV (3) Geomagnetic cutoff : select the primary particles which can reach the top of the atmosphere under the rigidity cutoff effect (use IGRF2005 as a geomagnetic data) (4) Interaction with atmosphere : use DPMJET3 as a hadron interaction model Observed energy spectra are compatible with simulation

Mysore, India9 Comparison of Electron Energy Spectrum in 1-100GeV primary secondary The primary electron spectrum observed by bCALET is compatible with the results of earlier experiments. The rigidity cutoff effect can be compared with that of AMS-01 spectrum at the similar latitude though there is a slight difference due to the altitude. In the case of the secondary electron spectrum, we should note that bCALET directly observed secondary electrons generated in atmosphere but AMS-01 and PAMELA observed down-going albedo particles. bCALET-1 (Sanriku, altitude 37km) Latitude : 39.1°(Θ M =0.525) Rigidity cutoff : ~13.3GV bCALET-2 (Taiki, altitude 35km) Latitude : 42.4°(Θ M =0.583) Rigidity cutoff : ~11.8GV AMS-01 (space, altitude km) Rigidity cutoff : ~10.0GV (when Θ M =0.583) HEAT (Lynn Lake, altitude 5.7g/cm 2 ) Latitude : 56.5°(Θ M =0.790) Rigidity cutoff : ~5.8GV

Summary A series of balloon experiments with the CALET prototype detector (bCALET) was carried out for verification of the capability and evaluation of the performance. The observed spectra of the electrons and the atmospheric gamma- rays were compatible with the former experiments and simulations. These prototypes brought enough feedback for development of CALET. Now we aim to the CALET mission ! Mysore, India10 We have successfully been developing the CALET instrument for long-term observation of electrons 1GeV-20TeV, gamma-rays 10GeV-10TeV, and nuclei 10GeV-1000TeV at ISS. The launch will be held in 2014 by H-IIB rocket.

Mysore, India11 Acknowledgment We greatly thank the staff of Balloon Team in ISAS for their essential contributions to the successful flight of bCALET. This work is supported by JSPS Grant-in-Aid for Scientific Research S (Grant no ).