Chapter 8. Pipelining. Instruction Hazards Overview Whenever the stream of instructions supplied by the instruction fetch unit is interrupted, the pipeline.

Slides:



Advertisements
Similar presentations
Pipelining (Week 8).
Advertisements

Computer Organization and Architecture
CSCI 4717/5717 Computer Architecture
Mehmet Can Vuran, Instructor University of Nebraska-Lincoln Acknowledgement: Overheads adapted from those provided by the authors of the textbook.
1 Lecture: Out-of-order Processors Topics: out-of-order implementations with issue queue, register renaming, and reorder buffer, timing, LSQ.
1 Advanced Computer Architecture Limits to ILP Lecture 3.
Pipeline Computer Organization II 1 Hazards Situations that prevent starting the next instruction in the next cycle Structural hazards – A required resource.
Lecture Objectives: 1)Define pipelining 2)Calculate the speedup achieved by pipelining for a given number of instructions. 3)Define how pipelining improves.
Chapter 8. Pipelining.
Chapter Six 1.
Chapter 12 CPU Structure and Function. CPU Sequence Fetch instructions Interpret instructions Fetch data Process data Write data.
Computer Organization and Architecture
S. Barua – CPSC 440 CHAPTER 6 ENHANCING PERFORMANCE WITH PIPELINING This chapter presents pipelining.
Pipelining II Andreas Klappenecker CPSC321 Computer Architecture.
1 Lecture 7: Out-of-Order Processors Today: out-of-order pipeline, memory disambiguation, basic branch prediction (Sections 3.4, 3.5, 3.7)
Computer Organization and Architecture The CPU Structure.
Chapter 12 Pipelining Strategies Performance Hazards.
1  2004 Morgan Kaufmann Publishers Chapter Six. 2  2004 Morgan Kaufmann Publishers Pipelining The laundry analogy.
Chapter 13 Reduced Instruction Set Computers (RISC) Pipelining.
Chapter 12 CPU Structure and Function. Example Register Organizations.
Pipelined Processor II CPSC 321 Andreas Klappenecker.
7/2/ _23 1 Pipelining ECE-445 Computer Organization Dr. Ron Hayne Electrical and Computer Engineering.
1 Lecture 7: Static ILP and branch prediction Topics: static speculation and branch prediction (Appendix G, Section 2.3)
Pipelining. Overview Pipelining is widely used in modern processors. Pipelining improves system performance in terms of throughput. Pipelined organization.
Intel Architecture. Changes in architecture Software architecture: –Front end (Feature changes such as adding more graphics, changing the background colors,
Lecture 15: Pipelining and Hazards CS 2011 Fall 2014, Dr. Rozier.
Please see “portrait orientation” PowerPoint file for Chapter 8 Figure 8.1. Basic idea of instruction pipelining.
1 Pipelining Reconsider the data path we just did Each instruction takes from 3 to 5 clock cycles However, there are parts of hardware that are idle many.
Chapter 8 Pipelining. A strategy for employing parallelism to achieve better performance Taking the “assembly line” approach to fetching and executing.
CSCI 6461: Computer Architecture Branch Prediction Instructor: M. Lancaster Corresponding to Hennessey and Patterson Fifth Edition Section 3.3 and Part.
Comp Sci pipelining 1 Ch. 13 Pipelining. Comp Sci pipelining 2 Pipelining.
CSE 340 Computer Architecture Summer 2014 Basic MIPS Pipelining Review.
Topics covered: Pipelining CSE243: Introduction to Computer Architecture and Hardware/Software Interface.
F 1 E 1 F 2 E 2 F 3 E 3 F 1 E 1 F 2 E 2 F 3 E 3 I 1 I 2 I 3 I 1 I 2 I 3 Instruction (a) Sequential execution (c) Pipelined execution Figure 8.1. Basic.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
Pipelining and Parallelism Mark Staveley
Chapter 6 Pipelined CPU Design. Spring 2005 ELEC 5200/6200 From Patterson/Hennessey Slides Pipelined operation – laundry analogy Text Fig. 6.1.
1  1998 Morgan Kaufmann Publishers Chapter Six. 2  1998 Morgan Kaufmann Publishers Pipelining Improve perfomance by increasing instruction throughput.
Branch Hazards and Static Branch Prediction Techniques
Pipelining Example Laundry Example: Three Stages
1 Pipelining (Chapter 8) TU-Delft TI1400/12-PDS Course website:
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB ECE232: Hardware Organization and Design Part 13: Branch prediction (Chapter 4/6)
LECTURE 10 Pipelining: Advanced ILP. EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls,
Chapter Six.
Advanced Architectures
Computer Architecture Chapter (14): Processor Structure and Function
Computer Architecture
Pipelining Chapter 6.
William Stallings Computer Organization and Architecture 8th Edition
PowerPC 604 Superscalar Microprocessor
Chapter 14 Instruction Level Parallelism and Superscalar Processors
Single Clock Datapath With Control
Pipeline Implementation (4.6)
Morgan Kaufmann Publishers The Processor
Morgan Kaufmann Publishers The Processor
Superscalar Processors & VLIW Processors
Pipelining Chapter 6.
Chapter 8. Pipelining.
Lecture 8: ILP and Speculation Contd. Chapter 2, Sections 2. 6, 2
Chapter 8. Pipelining.
Chapter 8. Pipelining.
Chapter Six.
Chapter Six.
Chapter 8. Pipelining.
CSC3050 – Computer Architecture
Pipelining Chapter 6.
Presentation transcript:

Chapter 8. Pipelining

Instruction Hazards

Overview Whenever the stream of instructions supplied by the instruction fetch unit is interrupted, the pipeline stalls. Cache miss Branch

Unconditional Branches

Branch Timing - Branch penalty - Reducing the penalty

Instruction Queue and Prefetching F : Fetch instruction E : Execute instruction W : Write results D : Dispatch/ Decode Instruction queue Instruction fetch unit Figure Use of an instruction queue in the hardware organization of Figure 8.2b. unit

Branch Timing with Instruction Queue X Figure 8.11.Branch timing in the presence of an instruction queue. Branch target address is computed in the D stage. F 1 D 1 E 1 E 1 E 1 W 1 F 4 W 3 E 3 I 5 (Branch) I 1 F 2 D Clock cycle E 2 W 2 F 3 D 3 E 4 D 4 W 4 F 5 D 5 F 6 F k D k E k F k+1 D 1 I 2 I 3 I 4 I 6 I k I 1 W k E Queue length1 Time Branch folding

Branch Folding Branch folding – executing the branch instruction concurrently with the execution of other instructions. Branch folding occurs only if at the time a branch instruction is encountered, at least one instruction is available in the queue other than the branch instruction. Therefore, it is desirable to arrange for the queue to be full most of the time, to ensure an adequate supply of instructions for processing. This can be achieved by increasing the rate at which the fetch unit reads instructions from the cache. Having an instruction queue is also beneficial in dealing with cache misses.

Conditional Braches A conditional branch instruction introduces the added hazard caused by the dependency of the branch condition on the result of a preceding instruction. The decision to branch cannot be made until the execution of that instruction has been completed. Branch instructions represent about 20% of the dynamic instruction count of most programs.

Delayed Branch The instructions in the delay slots are always fetched. Therefore, we would like to arrange for them to be fully executed whether or not the branch is taken. The objective is to place useful instructions in these slots. The effectiveness of the delayed branch approach depends on how often it is possible to reorder instructions.

Delayed Branch Add LOOPShift_leftR1 Decrement Branch=0 R2 LOOP NEXT (a) Original program loop LOOPDecrementR2 Branch=0 Shift_left LOOP R1 NEXT (b) Reordered instructions Figure Reordering of instructions for a delayed branch. Add R1,R3

Delayed Branch FE FE FE FE FE FE FE Instruction Decrement Branch Shift (delay slot) Figure 8.13.Execution timing showing the delay slot being filled during the last two passes through the loop in Figure Decrement (Branch taken) Branch Shift (delay slot) Add (Branch not taken) Clock cycle Time

Branch Prediction To predict whether or not a particular branch will be taken. Simplest form: assume branch will not take place and continue to fetch instructions in sequential address order. Until the branch is evaluated, instruction execution along the predicted path must be done on a speculative basis. Speculative execution: instructions are executed before the processor is certain that they are in the correct execution sequence. Need to be careful so that no processor registers or memory locations are updated until it is confirmed that these instructions should indeed be executed.

Incorrectly Predicted Branch F 1 F 2 I 1 (Compare) I 2 (Branch>0) I 3 D 1 E 1 W 1 F 3 F 4 F k D k D 3 X XI 4 I k Instruction Figure 8.14.Timing when a branch decision has been incorrectly predicted as not taken. E 2 Clock cycle D 2 /P 2 Time

Branch Prediction Better performance can be achieved if we arrange for some branch instructions to be predicted as taken and others as not taken. Use hardware to observe whether the target address is lower or higher than that of the branch instruction. Let compiler include a branch prediction bit. So far the branch prediction decision is always the same every time a given instruction is executed – static branch prediction.

Influence on Instruction Sets

Overview Some instructions are much better suited to pipeline execution than others. Addressing modes Conditional code flags

Addressing Modes Addressing modes include simple ones and complex ones. In choosing the addressing modes to be implemented in a pipelined processor, we must consider the effect of each addressing mode on instruction flow in the pipeline:  Side effects  The extent to which complex addressing modes cause the pipeline to stall  Whether a given mode is likely to be used by compilers

Recall Load X(R1), R2 Load (R1), R2

Complex Addressing Mode F FD DE X +[R1][X +[R1]][[X +[R1]]]Load Next instruction (a) Complex addressing mode W Clock cycle Time W Forward Load (X(R1)), R2

Simple Addressing Mode X +[R1]FD F F FD D D E [X +[R1]] [[X +[R1]]] Add Load Next instruction (b) Simple addressing mode W W W W Add #X, R1, R2 Load (R2), R2

Addressing Modes In a pipelined processor, complex addressing modes do not necessarily lead to faster execution. Advantage: reducing the number of instructions / program space Disadvantage: cause pipeline to stall / more hardware to decode / not convenient for compiler to work with Conclusion: complex addressing modes are not suitable for pipelined execution.

Addressing Modes Good addressing modes should have:  Access to an operand does not require more than one access to the memory  Only load and store instruction access memory operands  The addressing modes used do not have side effects Register, register indirect, index

Conditional Codes If an optimizing compiler attempts to reorder instruction to avoid stalling the pipeline when branches or data dependencies between successive instructions occur, it must ensure that reordering does not cause a change in the outcome of a computation. The dependency introduced by the condition- code flags reduces the flexibility available for the compiler to reorder instructions.

Conditional Codes Add Compare Branch=0 R1,R2 R3,R4... Compare Add Branch=0 R3,R4 R1,R2... (a) A program fragment (b) Instructions reordered Figure Instruction reordering.

Conditional Codes Two conclusion:  To provide flexibility in reordering instructions, the condition-code flags should be affected by as few instruction as possible.  The compiler should be able to specify in which instructions of a program the condition codes are affected and in which they are not.

Datapath and Control Considerations

Original Design

Pipelined Design - Separate instruction and data caches - PC is connected to IMAR - DMAR - Separate MDR - Buffers for ALU - Instruction queue - Instruction decoder output - Reading an instruction from the instruction cache - Incrementing the PC - Decoding an instruction - Reading from or writing into the data cache - Reading the contents of up to two regs - Writing into one register in the reg file - Performing an ALU operation

Superscalar Operation

Overview The maximum throughput of a pipelined processor is one instruction per clock cycle. If we equip the processor with multiple processing units to handle several instructions in parallel in each processing stage, several instructions start execution in the same clock cycle – multiple-issue. Processors are capable of achieving an instruction execution throughput of more than one instruction per cycle – superscalar processors. Multiple-issue requires a wider path to the cache and multiple execution units.

Superscalar

Timing I 1 (Fadd) D 1 D 2 D 3 D 4 E 1A E 1B E 1C E 2 E 3 E 3 E 3 E 4 W 1 W 2 W 3 W 4 I 2 (Add) I 3 (Fsub) I 4 (Sub) Figure 8.20.An example of instruction execution flow in the processor of Figure 8.19, assuming no hazards are encountered Clock cycle Time F 1 F 2 F 3 F 4 7

Out-of-Order Execution Hazards Exceptions Imprecise exceptions Precise exceptions I 1 (Fadd) D 1 D 2 D 3 D 4 E 1A E 1B E 1C E 2 E 3A E 3B E 3C E 4 W 1 W 2 W 3 W 4 I 2 (Add) I 3 (Fsub) I 4 (Sub) Clock cycle Time (a) Delayed write F 1 F 2 F 3 F 4 7

Execution Completion It is desirable to used out-of-order execution, so that an execution unit is freed to execute other instructions as soon as possible. At the same time, instructions must be completed in program order to allow precise exceptions. The use of temporary registers Commitment unit I 1 (Fadd) D 1 D 2 D 3 D 4 E 1A E 1B E 1C E 2 E 3A E 3B E 3C E 4 W 1 W 2 W 3 W 4 I 2 (Add) I 3 (Fsub) I 4 (Sub) Clock cycle Time (b) Using temporary registers TW F 1 F 2 F 3 F 4

Performance Considerations

Overview The execution time T of a program that has a dynamic instruction count N is given by: where S is the average number of clock cycles it takes to fetch and execute one instruction, and R is the clock rate. Instruction throughput is defined as the number of instructions executed per second.

Overview An n-stage pipeline has the potential to increase the throughput by n times. However, the only real measure of performance is the total execution time of a program. Higher instruction throughput will not necessarily lead to higher performance. Two questions regarding pipelining  How much of this potential increase in instruction throughput can be realized in practice?  What is good value of n?

Number of Pipeline Stages Since an n-stage pipeline has the potential to increase the throughput by n times, how about we use a 10,000-stage pipeline? As the number of stages increase, the probability of the pipeline being stalled increases. The inherent delay in the basic operations increases. Hardware considerations (area, power, complexity,…)