Chapter 17 Inventory Control 2.

Slides:



Advertisements
Similar presentations
Inventory Control.
Advertisements

What is Inventory? Definition--The stock of any item or resource used in an organization Raw materials Finished products Component parts Supplies Work.
Inventory Control Chapter 17 2.
INVENTORY Based on slides for Chase Acquilano and Jacobs, Operations Management, McGraw-Hill.
Introduction to Management Science
DOM 511 Inventory Control 2.
Inventory Management. Inventory Objective:  Meet customer demand and be cost- effective.
Chapter 13 - Inventory Management
1 Chapter 15 Inventory Control  Inventory System Defined  Inventory Costs  Independent vs. Dependent Demand  Basic Fixed-Order Quantity Models  Basic.
Chapter 17 Inventory Control.
Inventory Management Chapter 16.
Chapter 13 Inventory Systems for Independent Demand
Managerial Decision Modeling with Spreadsheets
Inventory Management A Presentation by R.K.Agarwal, Manager (Finance), PFC.
Operations Management
Chapter 11, Part A Inventory Models: Deterministic Demand
12 Inventory Management PowerPoint presentation to accompany
INVENTORY MANAGEMENT Chapter Twenty McGraw-Hill/Irwin
20–1. 20–2 Chapter Twenty Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Supply Chain Management (SCM) Inventory management
Chapter 9 Inventory Management.
Inventory Control, Cost & Deterministic models Unit-III Revised version.
Inventory Control Models
Lecture 5 Project Management Chapter 17.
Operations Management
Chapter 14 Inventory Control
Chapter 13 - Inventory Management
F O U R T H E D I T I O N Inventory Systems for Independent Demand © The McGraw-Hill Companies, Inc., 2003 chapter 16 DAVIS AQUILANO CHASE PowerPoint Presentation.
Operations Management
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
1 Operations Management Inventory Management. 2 The Functions of Inventory To have a stock of goods that will provide a “selection” for customers To take.
Chapter 12 – Independent Demand Inventory Management
Chapter 12: Inventory Control Models
MNG221- Management Science –
CHAPTER 7 Managing Inventories
Inventory control models
Inventory System Inventory system: the set of policies and controls that monitor levels of inventory and determines: –what levels should be maintained.
Inventory Modeling for Independent Demand
Inventory Stock of items or resources used in an organization.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
CHAPTER 12 Inventory Control.
1-1 1 McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved.
1 Slides used in class may be different from slides in student pack Chapter 17 Inventory Control  Inventory System Defined  Inventory Costs  Independent.
Chapter 17 Inventory Control.
Independent Demand Inventory Planning CHAPTER FOURTEEN McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Inventory Management. Learning Objectives  Define the term inventory and list the major reasons for holding inventories; and list the main requirements.
1 Chapter 6 –Inventory Management Policies Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition © Wiley 2010.
Inventory Management Chapter 12 Independent Demand A B(4) C(2) D(2)E(1) D(3) F(2) Dependent Demand Independent demand is uncertain. Dependent demand.
Inventory Models in SC Environment By Debadyuti Das.
1 Inventory Control Operations Management For Competitive Advantage, 10 th edition C HASE, J ACOBS & A QUILANO Tenth edition Chapter 14.
Inventory Management.  Inventory is one of the most expensive assets of many companies.  It represents as much as 60% of total invested capital. Inventory.
© The McGraw-Hill Companies, Inc., Chapter 14 Inventory Control.
MBA 8452 Systems and Operations Management
BUAD306 Chapter 13 - Inventory Management. Everyday Inventory Food Gasoline Clean clothes… What else?
Operations Research II Course,, September Part 3: Inventory Models Operations Research II Dr. Aref Rashad.
© The McGraw-Hill Companies, Inc., Inventory Control.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 12 Inventory Management.
What types of inventories business carry, and why they carry them.
Copyright 2009 John Wiley & Sons, Inc.12-1 Chapter 13: Inventory Management Lecture Outline   Elements of Inventory Management   Inventory Control.
Operations Fall 2015 Bruce Duggan Providence University College.
Chapter 17 Inventory Control
Inventory Control. Meaning Of Inventory Control Inventory control is a system devise and adopted for controlling investment in inventory. It involve inventory.
1 © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved Chapter 15 Inventory Control.
Chapter 6 Inventory Control Models 6-1
BUSI 104 Operations Management
Key Inventory Terms Lead time: Holding (carrying) costs:
Chapter 15 Inventory Systems for Independent Demand
INVENTORY Inventory is the stock of any item or resource used in an organization and can include: raw materials, finished products, component parts, supplies-in-transit.
DPT 335 PRODUCTION PLANNING & CONTROL
Chapter 17 Inventory Control.
Presentation transcript:

Chapter 17 Inventory Control 2

Inventory System Inventory is the stock of any item or resource used in an organization and can include: raw materials, finished products, component parts, supplies, and work-in-process An inventory system is the set of policies and controls that monitor levels of inventory and determines what levels should be maintained, when stock should be replenished, and how large orders should be 3

1. To maintain independence of operations Purposes of Inventory 1. To maintain independence of operations 2. To meet variation in product demand 3. To allow flexibility in production scheduling 4. To provide a safeguard for variation in raw material delivery time 5. To take advantage of economic purchase-order size 4

Holding (or carrying) costs Inventory Costs Holding (or carrying) costs Costs for storage, handling, insurance, etc Ordering costs Costs of someone placing an order, etc Shortage costs Costs of canceling an order, etc 5

Fixed-Order Quantity Model (assumption 1) Demand for the product is constant and uniform throughout the period Lead time (time from ordering to receipt) is constant Price per unit of product is constant

Fixed-Order Quantity Model (assumption 2) Inventory holding cost is based on average inventory Ordering or setup costs are constant All demands for the product will be satisfied (No back orders are allowed) 9

Basic Fixed-Order Quantity Model and Reorder Point Behavior 4. The cycle then repeats. 1. You receive an order quantity Q. R = Reorder point Q = Economic order quantity L = Lead time L Q R Time Number of units on hand 2. Your start using them up over time. 3. When you reach down to a level of inventory of R, you place your next Q sized order.

Basic Fixed-Order Quantity (EOQ) Model Formula TC=Total annual cost D =Demand C =Cost per unit Q =Order quantity S =Cost of placing an order or setup cost R =Reorder point L =Lead time H=Annual holding and storage cost per unit of inventory Total Annual = Cost Annual Purchase Cost Annual Ordering Cost Annual Holding Cost + + 12

Cost Minimization Goal Total Cost C O S T Holding Costs QOPT Annual Cost of Items (DC) Ordering Costs Order Quantity (Q) 11

solving for the optimized (cost minimized) value of Qopt Deriving the EOQ solving for the optimized (cost minimized) value of Qopt We also need a reorder point to tell us when to place an order 13

1. What is All-Jeans’ inventory control policy? EOQ Example All-Jeans sells 300 pairs of jeans per month. Holding cost is estimated to be $2 per pair of jeans per year. The production cost per pair of jeans is $20. The ordering cost is $120. 1. What is All-Jeans’ inventory control policy? 2. If the order lead time is 10 days, when should they place order to avoid shortage? 14 14

Solution 15 15

Days per year considered in average daily demand = 365 In-Class Exercise Annual Demand = 10,000 units Days per year considered in average daily demand = 365 Cost to place an order = $10 Holding cost per unit per year = 10% of cost per unit Lead time = 10 days Cost per unit = $15 Determine the economic order quantity and the reorder point. 16 16

Solution 17 17

Price Break (Quantity Discount) Model The more you buy, the more you save … The unit purchase cost reduces as the quantity increases. Given the incentive, how much should you buy?

How to find the best order quantity? Calculate the EOQ at each price range If all are feasible, pick the one with minimum cost. Stop. If some are not feasible (most of the time) start with the lowest cost find the minimum feasible quantity and calculate total cost. The quantity that gives the lowest cost is the answer.

Quantity Discount-Example A particular raw material is available to a company at three different prices, depending on the size of the order: Less than 100 kg $20 per kg 100 kg to 999 kg $19 per kg more than 1,000 kg $18 per kg The cost to place an order is $40. Annual demand is 3,000 kg. Holding cost is 25% of the material cost. What is the best quantity to buy each time?

Solution

Price-Break Example Problem Data (Part 1) A company has a chance to reduce their inventory ordering costs by placing larger quantity orders using the price-break order quantity schedule below. What should their optimal order quantity be if this company purchases this single inventory item with an e-mail ordering cost of $4, a carrying cost rate of 2% of the inventory cost of the item, and an annual demand of 10,000 units? Order Quantity(units) Price/unit($) 0 to 2,499 $1.20 2,500 to 3,999 1.00 4,000 or more .98 14

Price-Break Example Solution (Part 2) First, plug data into formula for each price-break value of “C” Annual Demand (D)= 10,000 units Cost to place an order (S)= $4 Carrying cost % of total cost (i)= 2% Cost per unit (C) = $1.20, $1.00, $0.98 Next, determine if the computed Qopt values are feasible or not Interval from 0 to 2499, the Qopt value is feasible Interval from 2500-3999, the Qopt value is not feasible Interval from 4000 & more, the Qopt value is not feasible 15

ABC Classification System Items kept in inventory are not of equal importance in terms of: dollars invested profit potential sales or usage volume stock-out penalties 30 60 A B C % of $ Value Use So, identify inventory items based on percentage of total dollar value, where “A” items are roughly top 15 %, “B” items as next 35 %, and the lower 65% are the “C” items 26

Inventory Accuracy and Cycle Counting Inventory accuracy refers to how well the inventory records agree with physical count Cycle Counting is a physical inventory-taking technique in which inventory is counted on a frequent basis rather than once or twice a year 27