Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 10. Energy Chapter Goal: To introduce the ideas of kinetic and.

Slides:



Advertisements
Similar presentations
Chapter 10. Energy Chapter Goal: To introduce the ideas of kinetic and potential energy and to learn a new problem-solving strategy based on conservation.
Advertisements

Chapter 10.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 6: Conservation of Energy Work.
ConcepTest Clicker Questions
Energy Conservation 1.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Work and Energy Chapter 5 Table of Contents Section 1 Work Section.
AP Physics B Summer Course 年AP物理B暑假班
Kinetic Energy and Gravitational Potential Energy We can rewrite
PHY131H1S - Class 15 Today: Conservation of Energy Kinetic Energy Gravitational Potential Energy Hooke’s Law Elastic Potential Energy.
Energy Chapter 10 What is Energy?
CONSERVATION LAWS PHY1012F ENERGY Gregor Leigh
Work and Energy Chapter 7.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Important forms of energy How energy can be transformed and transferred.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Important forms of energy How energy can be transformed and transferred.
Conservation of Energy
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Important forms of energy How energy can be transformed and transferred.
Chapter 7 Energy of a System.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Chapter 7 Potential Energy.
Physics 6A Work and Energy examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Bellringer 10/25 A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion,
Work and Energy © 2014 Pearson Education, Inc..
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Kinetic and Potential Energy
Regents Physics Work and Energy. Energy and Work Energy is the ability to Work Work is the transfer of energy to an object, or transformation of energy.
ADV PHYSICS Chapter 5 Sections 2 and 4. Review  Work – force applied over a given distance W = F Δ x [W] = Joules, J  Assumes the force is constant.
Energy Chapter 5 Section 2.
Potential Energy and Conservative Forces
Dr. Derrick Boucher Assoc. Prof. of Physics
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 10. Energy This pole vaulter can lift herself nearly 6 m (20 ft)
Chapter 7 Energy of a System. Introduction to Energy A variety of problems can be solved with Newton’s Laws and associated principles. Some problems that.
Review and then some…. Work & Energy Conservative, Non-conservative, and non-constant Forces.
Mechanical Energy. Kinetic Energy, E k Kinetic energy is the energy of an object in motion. E k = ½ mv 2 Where E k is the kinetic energy measured in J.
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
Energy Transformations and Conservation of Mechanical Energy 8
Copyright © 2010 Pearson Education, Inc. Chapter 8 Potential Energy and Conservation of Energy.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
Chapter 14 VIBRATIONS AND WAVES In this chapter you will:  Examine vibrational motion and learn how it relates to waves.  Determine how waves transfer.
Energy Transformations and Conservation of Mechanical Energy 8.01 W05D2.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Chapter 8 Potential Energy. Potential energy is the energy associated with the configuration of a system of objects that exert forces on each other This.
Potential Energy ~March 1, 2006.
Work and Energy Work The work done by a constant force is defined as the product of the component of the force in the direction of the displacement and.
Physics 6A Work and Energy examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More gravitational potential energy Potential energy of a spring Work-kinetic.
Potential energy and conservation of energy Chapter 6.
Chapter 7 Energy of a System.
332 – UNIT 6 WORK & ENERGY.
CHAPTER - 11 WORK AND ENERGY CLASS :- IX. 1) Work :- Work is said to be done when a force acts on an object and the object is displaced in the direction.
Work and EnergySection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 WorkWork Section 2 EnergyEnergy Section 3 Conservation of EnergyConservation.
Advanced Problems 3 These problems will contain:
1 Chapter 7 Potential Energy Potential Energy Potential energy is the energy associated with the configuration of a system of two or more interacting.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
Conservation of Energy. Equations For any closed system that undergoes a change, the total energy before the change is the same as the total energy after.
© 2013 Pearson Education, Inc. Define kinetic energy as an energy of motion: Define gravitational potential energy as an energy of position: The sum K.
Physics - Harmonic Motion We have been dealing with straight line motion or motion that is circular. There are other types of motion that must be dealt.
Chapter 8 Conservation of Energy EXAMPLES. Example 8.1 Free Fall (Example 8.1 Text book) Determine the speed of the ball at y above the ground The sum.
FOR SCIENTISTS AND ENGINEERS physics a strategic approach THIRD EDITION randall d. knight © 2013 Pearson Education, Inc. Chapter 10 Lecture.
Chapter 10 Lecture.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Important forms of energy How energy can be transformed and transferred.
Energy and its Conservation Physics Mrs. Coyle. Part I Mechanical Energy – Potential – Kinetic Work Energy Theorem.
Work and Potential Energy. Outline what is meant by change in gravitational potential energy. State and apply how Work is equivalent to Potential Energy.
Section 10.3 Kinetic Energy (cont.)
Energy. Energy Energy (def.) the ability to do work. Unit is Joules. Work and energy are interrelated. Work must be done on an object to get it to.
Conservation of Energy with Springs AP style
Do Now: (Yesterday’s Atwood’s Machine)
Compressed springs store energy.
Conservation Laws Elastic Energy
Presentation transcript:

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 10. Energy Chapter Goal: To introduce the ideas of kinetic and potential energy and to learn a new problem-solving strategy based on conservation of energy.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Ch. 10 – Student Learning Objectives To begin developing a concept of energy— what it is, how it is transformed, and how it is transferred. To introduce the concepts of kinetic and potential energy. To learn Hooke’s law for springs and the new idea of a restoring force.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Energy – The Big Picture Two basic types of mechanical energy: Kinetic energy (K) is an energy of motion. Gravitational potential energy (U g ) is an energy of position. Under some circumstances (e.g. freefall) these two kinds of energy can be transformed back and forth without loss from the system.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Kinetic and Potential Energy For some systems (e.g. systems in freefall):

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. ½ mv 2 f + mgy f = ½ mv mgy 0 where y is the height above an arbitrary zero, (not the displacement). This result is true for motion along any frictionless surface, regardless of the shape. This is a generalization of a relationship we already use for free fall: v 2 f = v (-g)(y f – y 0 )

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Kinetic and Potential Energy

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. A box slides along the frictionless surface shown in the figure. It is released from rest at the position shown. Is the highest point the box reaches on the other side at level a, at level b, or level c? A.At level a B.At level b C.At level c

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. A box slides along the frictionless surface shown in the figure. It is released from rest at the position shown. Is the highest point the box reaches on the other side at level a, at level b, or level c? A.At level a B.At level b C.At level c

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Energy Bar charts – a visual aid

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Workbook Problems 12-14

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EOC #4 a.What is the kinetic energy of a 1500 kg car traveling at 30 m/s? b.From what height would the car have to be dropped (!) to have the same amount of energy upon impact? c.Repeat parts a and b for a car of 3000 kg. By how much did the height change?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EOC#4 a.6.75 x 10 6 Joules b.Solve for the amount of initial potential energy needed to give the car a final kinetic energy equal to part a to get y = 46 m K 0 + U g0 = K f + U gf

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EOC#4 a.6.75 x 10 6 Joules b.Solve for the amount of initial potential energy needed to give the car a final kinetic energy equal to part a to get y = 46 m. c.Same height K 0 + U g0 = K f + U gf

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The Zero of Potential Energy You can place the origin of your coordinate system, and thus the “zero of potential energy,” wherever you choose and be assured of getting the correct answer to a problem. The reason is that only ΔU has physical significance, not U g itself.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Workbook Problem #8

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Workbook Problem #8 - Answer

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Conservation of Mechanical Energy The sum of the kinetic energy and the potential energy of a system is called the mechanical energy. the kinetic energy and the potential energy can change, as they are transformed back and forth into each other, but their sum remains constant.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Conservation of Mechanical Energy Under what conditions is E mech conserved? What happens to the energy when E mech is not conserved? Are there potential energies other than gravitational, and how do you calculate them?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Hooke’s Law If you stretch a rubber band, a force appears that tries to pull the rubber band back to its equilibrium, or unstretched, length. A force that restores a system to an equilibrium position is called a restoring force. If s is the position of the end of a spring, and s e is the equilibrium position, we define Δs = s – s e. If (F sp ) s is the s-component of the restoring force, and k is the spring constant of the spring, then Hooke’s Law states that The minus sign is the mathematical indication of a restoring force.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Hooke’s Law

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Workbook #17

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Workbook #17 - Answer a.13 cm b.8 cm

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The graph shows force versus displacement for three springs. Rank in order, from largest to smallest, the spring constants k 1, k 2, and k 3.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The graph shows force versus displacement for three springs. Rank in order, from largest to smallest, the spring constants k 1, k 2, and k 3. Answer: k 1 > k 2 > k 3

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Elastic Potential Energy

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Elastic Potential Energy U s = ½ k (∆s) 2 ∆s = (s-s e ) where s e is the equilibrium position of the end of the spring ∆U s = ½ k [(s f - s e ) 2 - (s 0 - se) 2 ]. Often s f or s 0 = s e as the spring begins or ends in equilibrium position. at s=s e, the ball will lose contact with the spring

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Workbook problems 19, 20, 21

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EOC #21 A student places his 500 g physics book on a frictionless table and pushes it against a spring, compressing it by 4.0 cm. The spring constant is 1250 N/m. He then releases the book. What is the speed as it slides away from the spring? Draw a before and after picture:

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EOC #21 Knowns m=.5 kg k = 1250 N/m x 1 = -.04 m v 1 = 0m/s Find: v 2, the speed of the book when it is released Draw an energy bar chart to determine what energy transformation takes place

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EOC #21 The elastic potential energy of the spring is converted into the kinetic energy of the book. Solve by replacing each energy term in the bar chart with a value:

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. ½ mv ½ k(x 1 – x e ) 2 = ½ mv ½ k(x 2 – x e ) 2 This simplifies to: ½ k(x 1 ) 2 = ½ mv 2 2 and v 2 = = 2.0 m/s

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Problem with U g and U s (EOC #44) A 1000 kg safe is 2.0 m above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 50 cm. What is the spring constant of the spring? Draw a before and after picture and decide on a zero.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Problem with U g and U s (EOC #44) Here the author decided on y e (equilibrium of the spring). Good choice, since we have no information on the length of the spring. The relevant information was given relative to the top of the spring. The safe has some velocity when it first hits the spring. Do we need to know that?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Kinetic energy in the middle of the problem has no bearing and does not need to be calculated A 1000 kg safe is 2.0 m above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 50 cm. What is the spring constant of the spring?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. A 1000 kg safe is 2.0 m above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 50 cm. What is the spring constant of the spring? Using the non-zero terms from the energy bar chart, we get: mgy 0 = mgy 1 + ½ k (y 1 - y e ) 2 k= 196,000 N/m Note that mgy 1 is negative for the zero chosen.