A parametric study of frequency sweep rate of chorus wave packets E. Macúšova (1), O. Santolík (1,2), P. Décrèau (3), D. A. Gurnett (4), J. S. Pickett.

Slides:



Advertisements
Similar presentations
GEM WAVE MODELLING CHALLENGE PRELIMINARY NOTES AGU AUTUMN MEETING SAN FRANCISCO 9 DECEMBER, 2013 David Nunn 1 1. School of Electronics and Computer Science.
Advertisements

Study of Pi2 pulsations observed from MAGDAS chain in Egypt E. Ghamry 1, 2, A. Mahrous 2, M.N. Yasin 3, A. Fathy 3 and K. Yumoto 4 1- National Research.
E. E. Titova, B. V. Kozelov Polar Geophysical Institute, Apatity, Russia V.Y.Trakhtengerts, A. G. Demekhov Institute of Applied Physics, Nizhny Novgorod,
Waves and Particles in the Radiation Belt Kaiti Wang PSSC/NCKU March 17, 2009 Opportunity for Collaboration on ERG and SCOPE Missions & Community Input.
1 FIREBIRD Science Overview Marcello Ruffolo Nathan Hyatt Jordan Maxwell 2 August 2013FIREBIRD Science.
Spatial distribution of the auroral precipitation zones during storms connected with magnetic clouds O.I. Yagodkina 1, I.V. Despirak 1, V. Guineva 2 1.
混合模拟 基本方程与无量纲化 基本方程. 无量纲化 方程化为 一些基本关系式 Bow shock and magnetosheath.
Which describes a variation of wave frequency ω(t) in a geometric-optic approximation [4]. Here n(ω) is the refractive index of the medium, is the vector.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
1 Duct Formation by HF heating Gennady Milikh, Aram Vartanyan, Dennis Papadopoulos, University of Maryland Evgenii Mishin, Air Force Research Lab, Hanscom.
1 TOWARD PREDICTING VLF TRIGGERING MURI Workshop 3 March 2008 E. Mishin and A. Gibby Boston College ISR Stanford University STAR Lab.
SOLAR MICROWAVE DRIFTING SPIKES AND SOLITARY KINETIC ALFVEN WAVES D. J. Wu, J. Huang, J. F. Tang, and Y. H. Yan The Astrophysical Journal, 665: L171–L174,
Damping of Whistler Waves through Mode Conversion to Lower Hybrid Waves in the Ionosphere X. Shao, Bengt Eliasson, A. S. Sharma, K. Papadopoulos, G. Milikh.
HF Focusing due to Field Aligned Density Perturbations A. Vartanyan 1, G. M. Milikh 1, K. Papadopoulos 1, M. Parrot 2 1 Departments of Physics and Astronomy,
N.V. Semenova Polar Geophysical Institute, Apatity, Russia.
Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind Q. M. Lu School of Earth and Space Science, Univ.
YERAC On the structure of radio pulsar magnetospheres On the structure of radio pulsar magnetospheres Igor F. Malov, Еlena Nikitina Pushchino Radio.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Workshop on Earthquakes: Ground- based and Space Observations 1 1 Space Research Institute, Austrian Academy of Science, Graz, Austria 2 Institute of Physics,
Conclusions In summary, this analysis of the topside sounder data from ISS-b leads to the following preliminary conclusions:  There is no apparent preference.
Problem no. 4 TEAM TALNET.  Discharging an electronic flash unit near a cymbal will produce a sound from the cymbal.  Explain the phenomenon and investigate.
RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere Anatoly Petrukovich and Resonance team RESONANCEРЕЗОНАНС R.
1 Association Euratom-Cea TORE SUPRA Tore Supra “Fast Particles” Experiments LH SOL Generated Fast Particles Meeting Association Euratom IPP.CR, Prague.
L. Chen US TTF meeting, 2014 April 22-25, San Antonio, Texas 1 Study on Power Threshold of the L-I-H Transition on the EAST Superconducting Tokamak L.
Astrophysics Seminar October 2004 R. L. Mutel (& D. Menietti) University of Iowa Fine Structure in Auroral Kilometric Radiation: Evidence for Electromagnetic.
Graz, June 2007 The DEMETER mission: Objectives and first results M. Parrot LPCE/CNRS 3A, Avenue de la Recherche Orléans cedex 2, France
STAMMS Conference Meeting, Orleans, France May 2003 R. L. Mutel, D. A. Gurnett, I. Christopher, M. Schlax University of Iowa Spatial and Temporal Properties.
Outline > does the presence of NL waves affect the conclusion that QL acceleration suffices? > it depends... Outline Large amplitude whistler waves Limitations.
Powerpoint Templates Page 1 Depth Effects of DEP Chip with Microcavities Array on Impedance Measurement for Live and Dead Cells Cheng-Hsin Chuang - STUST.
Plasma Density Structures in the Inner Magnetosphere Derived From RPI Measurements B. Reinisch 1, X. Huang 1, P. Song 1, J. Green 2, S. Fung 2 V. Vasyliunas.
Plasmasphere Refilling Rates Inferred from Polar and IMAGE Satellite Spectrogram Data T. Huegerich(1), J. Goldstein(1), P.H. Reiff(1), B.W. Reinisch(2)
On the Role of Electric Field Changes when Calculating Thunderstorm Currents Yu.V. Shlugaev, V.V. Klimenko, E.A. Mareev Institute of Applied Physics RAS,
XVII CLUSTER Workshop, Uppsala, 14 May 2009 Fan and horseshoe instabilities -relation to the low frequency waves registered by Cluster in the polar cusp.
Observation of a Non Thermal Continuum radio event during the CLUSTER Tilt campaign 17th CLUSTER Workshop Uppsala, Sweden, 12 – 15 May 2009 Uppsala May.
Cluster observations of a reconnection site at high- latitude magnetopause Y. Khotyaintsev (1), A. Vaivads (1), Y. Ogawa (1,2), M. André(1), S. Buchert(1),
Gurnett, 2010 BqBq B tot Ring Current and Asymmetric Ring Current Magnetospheres of the Outer Planets - Boston, MA July 13, 2011 BRBqBfBtBRBqBfBt dB q.
Birkeland field-aligned current as an attractor of Alfvénic coherent structures: mechanism for aurora brightening and structuring I.V. Golovchanskaya,
IMPORTANCE OF FAST MEASUREMENTS OF SOLAR WIND PARAMETERS AT THE IP SHOCK FRONT Moscow, February 6-10, 2012 Z. Němeček, J. Šafránková, L. Přech, O. Goncharov,
1 Receiving Ground-based VLF Transmissions with RPI on IMAGE Bodo W. Reinisch Environmental, Earth, and Atmospheric Sciences Department Center for Atmospheric.
Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
Laboratory Study of Spiky Potential Structures Associated with Multi- Harmonic EIC Waves Robert L. Merlino and Su-Hyun Kim University of Iowa Guru Ganguli.
Simultaneous in-situ observations of the feature of a typical FTE by Cluster and TC1 Zhang Qinghe Liu Ruiyuan Polar Research Institute of China
A. J. Kopf 1,2 and D. A. Gurnett 1 1 University of Iowa 2 University of Florida Special thanks to J. D. Menietti, R. L. Mutel, and W. M. Farrell.
Guan Le NASA Goddard Space Flight Center Challenges in Measuring External Current Systems Driven by Solar Wind-Magnetosphere Interaction.
HAARP-induced Ionospheric Ducts Gennady Milikh, University of Maryland in collaboration with: Dennis Papadopoulos, Chia-Lee Chang, BAE systems Evgeny Mishin,
17th Cluster workshop Uppsala, Sweden , May 12-15, 2009
RPWI Team Meeting, Sep. 2010, Roma Magnetic Loop Antenna (MLA) Scientific Objectives A. Marchaudon, V. Krasnoselskikh, T. Dudok de Wit, C. Cavoit,
SEP Event Onsets: Far Backside Solar Sources and the East-West Hemispheric Asymmetry S. W. Kahler AFRL Space Vehicles Directorate, Kirtland AFB, New Mexico,
Measurements of 3D Structure in Solar Wind Langmuir Waves
Application of Advanced Spectral Techniques to EMFISIS Burst Mode Waveform Data Chris Crabtree Erik Tejero CL Enloe Guru Ganguli Naval Research Laboratory.
MULTI-INSTRUMENT STUDY OF THE ENERGY STEP STRUCTURES OF O + AND H + IONS IN THE CUSP AND POLAR CAP REGIONS Yulia V. Bogdanova, Berndt Klecker and CIS TEAM.
Simulations of the effects of extreme solar flares on technological systems at Mars Paul Withers, Boston University Monday
Effects of January 2010 stratospheric sudden warming in the low-latitude ionosphere L. Goncharenko, A. Coster, W. Rideout, MIT Haystack Observatory, USA.
1 NSSC National Space Science Center, Chinese academy of Sciences FACs connecting the Ionosphere and Magnetosphere: Cluster and Double Star Observations.
WHISPER Cross-caibration activities
Data-Model Comparisons
Frequency Distributions
M. Yamauchi1, I. Dandouras2, H. Reme2,
Meteoroids 2016, ESTEC, Noordwijk, the Netherlands, June 6-10, 2016
Dipole Antennas Driven at High Voltages in the Plasmasphere
Masahiro Ueda, Tatsuo Shibata  Biophysical Journal 
Keeping up with Bats: Dynamic Auditory Tuning in a Moth
Volume 76, Issue 5, Pages (December 2012)
Volume 111, Issue 2, Pages (July 2016)
Is Aggregate-Dependent Yeast Aging Fortuitous
Fig. 2. Best model fits. Best model fits. Illustration of the best model fits for the (A) basic, (B) continuous, and (C) cluster models. See Table 1 and.
Honghui Zhang, Andrew J. Watrous, Ansh Patel, Joshua Jacobs  Neuron 
by Andreas Keiling, Scott Thaller, John Wygant, and John Dombeck
Logarithmic fitness trajectory emerges from hopping between MSs
Presentation transcript:

A parametric study of frequency sweep rate of chorus wave packets E. Macúšova (1), O. Santolík (1,2), P. Décrèau (3), D. A. Gurnett (4), J. S. Pickett (4), D. Nunn (5), A. G. Demekhov (6), E. E. Titova (7) (1) Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, (2) IAP/CAS, Prague, Czech Republic, (3) LPCE/CNRS, Orleans, France, (4) University of Iowa, IA, USA, (5) ECS, Southampton University, UK, (6) Institute of Applied Physics, Nizhny Novgorod, Russia, (7) Polar Geophysics Institute, Apatity, Russia. Whistler-mode chorus consists of intense electromagnetic wave packets generated by a nonlinear mechanism. Source region of chorus emission is localized close to the geomagnetic equatorial plane. Chorus wave packets are discrete time-frequency structures in a frequency range from a few hundreds of Hz to several kHz changing their frequency at time scale from a few tenths of seconds to a few seconds. Our investigation is based on multipoint measurements of the wideband (WBD) plasma wave instruments on board the four Cluster spacecraft. We investigate the sweep rate of the emission frequency as a function of the plasma density in the equatorial plane measured by the WHISPER active sounder and we then compare it with theoretical and simulation results. A model based on the Backward Wave Oscillator (BWO) theory, a numerical simulation using Vlasov Hybrid Simulation (VHS) code and also our experimental results give an increasing sweep rate for a decreasing background plasma density. INTRODUCTION Table 1. The first column shows processed cases, the second column contains average electron densities, the third column shows median values of frequency sweep of risers, the fourth column contains number of processed risers events, the fifth column contains median values of frequency sweep of fallers and the last column contains the number of fallers for each case. We have investigated the sweep rate of the chorus emission frequency as a function of the cold plasma density in the equatorial plane near L = 4.2 – 4.6 R E The theoretical scaling based on the BWO theory and also numerical simulations predict increasing sweep rate of chorus elements for decreasing cold plasma density. Preliminary results of our study seem to be consistent with these predictions. The duration of the processed wave packets varied between 30 and 500 ms. In the future we would like to investigate the sweep rate as a function of wave amplitude. Figure 2a-e: Examples of histograms of the sweep rate of individual chorus elements (events are sorted from the lowest electron density to the highest) measured on following days. 2a) on December 06, The average electron density during the time interval (14: :00 UT) was around 9 particles per cc and Kp index was 3 0 and the L = 4.6R E ( L = Mc’Ilwain’s parameter). During this day occurred mostly risers. 2b) on January 20, 2004 during the time interval (19:25-19:30 UT) the average electron density was 11 cm −3, Kp index was 4 + and 3 − and the L value was 4.3 R E. We observe mostly fallers. 2c) on November 19, 2001 from 12:00 to 12:45 UT the average electron density was about 12 cm−3, L value was 4.4 R E and the Kp index was d) From 13:56 UT to 14:20 UT on March 25, 2002 the Kp index was 2 0, the electron density was about 27 cm −3. On this even we observe only risers close to L= 4.5R E. 2e) on October 21, 2001 during the processed time interval (23: :35 UT) at L = 4.2R E the geomagnetic activity was very high, with the Kp index 8 −. The average electron density was about 192 cm −3. 2e 2b 2c 2a2d Figure 6 CONCLUSIONS REFERENCES Nunn et al.(2005), A parametric study of the numerical simulations of triggered VLF emissions, Annales Geophysicae, Volume 23, Issue 12, pp , Trakhtengerts et al.(2004), Interpretation of Cluster data on chorus emissions using the backward wave oscillator model, Physics of Plasmas, Volume 11, Issue 4, pp , Figure 5. Each point characterizes the median value of the sweep rate for one of all processed time intervals of all chorus events versus the average value of electron density. The error bars describe quantiles: Q 16/100 and Q 84/100. Red dashed lines represent results from the numerical simulation Nunn et al. (2005) and the green dash-dot line represents theoretical scaling (see Fig.6) based on the BWO model of Trakhtengerts et al. (2004). We fit median values of the sweep rate of the measured risers with the theoretical model using a least squares method. Figure 3a-b: Probability density function of the duration of chorus elements measured a) on December 6, 2003 and b) on October 21, a3b Figure 6. Each point and error bar represents the same as in the Figure 5. Red dashed lines - the numerical simulation as in Figure 5. Green dash-dot line describes linear fit of theoretical scaling based on the model of Trakhtengerts et al. (2004) with input parameters: log (N e ), logarithm of median of risers and measurements errors ((logQ 16/100 -logQ 84/100 )/2). Blue dash-dot line is linear fit with input parameters: log (N e ), logarithm of geometrical average of Q 16/100 and Q 84/100 and uncertainties (log(Q 84/100 - median value of risers)) Figure 1. Example of chorus elements measured on board of Cluster satellites on December 22, 2001 by the wideband (WBD) plasma wave instrument. Spacecraft position is given on the bottom: UT-universal time; λ m -magnetic dipole latitude; R E - Earth radius; MLT-magnetic local time.