Quantum One: Lecture 5a. Normalization Conditions for Free Particle Eigenstates.

Slides:



Advertisements
Similar presentations
Rae §2.1, B&J §3.1, B&M § An equation for the matter waves: the time-dependent Schrődinger equation*** Classical wave equation (in one dimension):
Advertisements

Physical Chemistry 2nd Edition
Quantum One: Lecture 6. The Initial Value Problem for Free Particles, and the Emergence of Fourier Transforms.
Quantum One: Lecture 9. Graham Schmidt Orthogonalization.
The Quantum Mechanics of Simple Systems
Integrals over Operators
Quantum One: Lecture More about Linear Operators 3.
Quantum One: Lecture 17.
Quantum One: Lecture 4. Schrödinger's Wave Mechanics for a Free Quantum Particle.
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
Quantum One: Lecture Canonical Commutation Relations 3.
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
Random Matrices Hieu D. Nguyen Rowan University Rowan Math Seminar
Schrödinger Wave Equation 1 Reading: Course packet Ch 5.7 SCHROEDINGER WAVE EQUATION (both images from Wikipedia.com)
Chapter 3 Formalism. Hilbert Space Two kinds of mathematical constructs - wavefunctions (representing the system) - operators (representing observables)
2. Solving Schrödinger’s Equation Superposition Given a few solutions of Schrödinger’s equation, we can make more of them Let  1 and  2 be two solutions.
Schrödinger We already know how to find the momentum eigenvalues of a system. How about the energy and the evolution of a system? Schrödinger Representation:
Quantum One: Lecture 7. The General Formalism of Quantum Mechanics.
Lecture 7 Information in wave function. II. (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Quantum One: Lecture 8. Continuously Indexed Basis Sets.
Ch 9 pages ; Lecture 21 – Schrodinger’s equation.
Physics 3 for Electrical Engineering
From the previous discussion on the double slit experiment on electron we found that unlike a particle in classical mechanics we cannot describe the trajectory.
Chap 3. Formalism Hilbert Space Observables
Quantum One: Lecture Representation Independent Properties of Linear Operators 3.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 18 A Quantum Mechanical Model for the Vibration and Rotation of Molecules.
MODULE 1 In classical mechanics we define a STATE as “The specification of the position and velocity of all the particles present, at some time, and the.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
Ch 4. Using Quantum Mechanics on Simple Systems
1 MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments The variational method.
Physics 361 Principles of Modern Physics Lecture 11.
Quantum Mechanical Cross Sections In a practical scattering experiment the observables we have on hand are momenta, spins, masses, etc.. We do not directly.
Phy 303: Classical Mechanics (2) Chapter 3 Lagrangian and Hamiltonian Mechanics.
Quantum Two 1. 2 Angular Momentum and Rotations 3.
Physics 361 Principles of Modern Physics Lecture 13.
Mathematical Tools of Quantum Mechanics
Physical Chemistry III (728342) The Schrödinger Equation
2. Time Independent Schrodinger Equation
Chapter 9 Spin. Total angular momentum Let us recall key results for the total angular momentum 6.B.2 6.C.1.
量子力學導論 Chap 1 - The Wave Function Chap 2 - The Time-independent Schrödinger Equation Chap 3 - Formalism in Hilbert Space Chap 4 - 表象理論.
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
An equation for matter waves Seem to need an equation that involves the first derivative in time, but the second derivative in space As before try solution.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
Lectures in Physics, summer 2008/09 1 Modern physics 2. The Schrödinger equation.
Quantum Two 1. 2 Angular Momentum and Rotations 3.
Lesson 6: Particles and barriers
The Quantum Theory of Atoms and Molecules
Schrodinger wave equation
UNIT 1 Quantum Mechanics.
Quantum Mechanics.
Formalism Chapter 3.
Concept test 15.1 Suppose at time
Quantum One.
Quantum One.
Quantum One.
Quantum Two.
Quantum One.
Quantum One.
Concept test 15.1 Suppose at time
Quantum One.
Quantum One.
Quantum One.
Quantum Two.
Quantum One.
Quantum Mechanics.
Particle in a Box.
The Stale of a System Is Completely Specified by lts Wave Function
Quantum Mechanics Postulate 4 Describes expansion
Shrödinger Equation.
Quantum One.
Presentation transcript:

Quantum One: Lecture 5a

Normalization Conditions for Free Particle Eigenstates

In the last lecture we began to explore Schrödinger's Mechanics as it applies to a free quantum mechanical particle, for which the Hamiltonian is simply the kinetic energy operator The energy eigenvalue equation for the free particle reduces to the Helmoltz equation where Using separation of variables we found energy eigenfunctions of the form with energies where the wavevector has real components.

The free particle energy eigenvalues are thus positive and continuous, and lead to stationary solutions of the form where The free particle energy eigenstates are also eigenstates of the momentum operator with momentum eigenvalues

In this lecture we proceed towards a general solution of the initial value problem for the free particle, by exploring appropriate normalization conditions for the free particle energy eigenfunctions. Clearly, the free particle energy eigenfunctions are not square normalizable. Indeed, for these states the probability density of finding the particle at any point is independent of position, reflecting the fact that a classical free particle moving, e.g., along the x axis spends equal time in any given interval of unit length.

In this lecture we proceed towards a general solution of the initial value problem for the free particle, by exploring appropriate normalization conditions for the free particle energy eigenfunctions. Clearly, the free particle energy eigenfunctions are not square normalizable. Indeed, for these states the probability density of finding the particle at any point is independent of position, i.e., Reflecting the fact that a classical free particle moving, e.g., along the x axis spends equal time in any given interval of unit length.

In this lecture we proceed towards a general solution of the initial value problem for the free particle, by exploring appropriate normalization conditions for the free particle energy eigenfunctions. Clearly, the free particle energy eigenfunctions are not square normalizable. Indeed, for these states the probability density of finding the particle at any point is independent of position, i.e., Presumably, this reflects the fact that a classical free particle moving, e.g., along the x axis spends equal time in any given interval of unit length.

But in this situation, for any value of the normalization constant A, the integral over all space diverges, i.e., since it is proportional to the (presumed infinite) volume of the universe, i.e., We are forced, therefore, to find a mathematical convention that allows us to sensibly expand arbitrary dynamical states in terms of these free particle energy eigenfunctions. Two different conventions are commonly employed for this purpose.

But in this situation, for any value of the normalization constant A, the integral over all space diverges, i.e., since it is proportional to the (presumed infinite) volume of the universe, i.e., We are forced, therefore, to find a mathematical convention that allows us to sensibly expand arbitrary dynamical states in terms of these free particle energy eigenfunctions. Two different conventions are commonly employed for this purpose.

But in this situation, for any value of the normalization constant A, the integral over all space diverges, i.e., since it is proportional to the (presumed infinite) volume of the universe, i.e., We are forced, therefore, to find a mathematical convention that allows us to sensibly expand arbitrary dynamical states in terms of these free particle energy eigenfunctions. Two different conventions are commonly employed for this purpose.

But in this situation, for any value of the normalization constant A, the integral over all space diverges, i.e., since it is proportional to the (presumed infinite) volume of the universe, i.e., We are forced, therefore, to find a mathematical convention that allows us to sensibly expand arbitrary dynamical states in terms of these free particle energy eigenfunctions. Two different conventions are commonly employed for this purpose.

The first such convention (which we will not use) is called Box Normalization – In this convention the universe is assumed to be a very large cubic box of volume V in which the particle is confined, with the value of the wave function required to be equal on opposite faces (referred to as periodic boundary conditions). Thus, for this box, one sets Thus, although the box is large, the wave function is square-normalized. Unfortunately, this makes the spectrum of both energy and momentum discrete, since only wavelengths that just fit within the box are allowed. This unfortunate quantization of the free particle spectrum can be avoided by employing an alternative convention.

The first such convention (which we will not use) is called Box Normalization – In this convention the universe is modeled as a very large cubic box of volume V in which the particle is confined, with the value of the wave function required to be equal on opposite faces of the box (what are referred to as periodic boundary conditions). For this box universe, one sets Thus, although the box is large, the wave function is square-normalized. Unfortunately, this makes the spectrum of both energy and momentum discrete, since only wavelengths that just fit within the box are allowed. This unfortunate quantization of the free particle spectrum can be avoided by employing an alternative convention.

The first such convention (which we will not use) is called Box Normalization – In this convention the universe is modeled as a very large cubic box of volume V in which the particle is confined, with the value of the wave function required to be equal on opposite faces of the box (what are referred to as periodic boundary conditions). For this box universe, one sets Thus, although the box is large, the wave function is square-normalized. Unfortunately, this makes the spectrum of both energy and momentum discrete, since only wavelengths that just fit within the box are allowed. This unfortunate quantization of the free particle spectrum can be avoided by employing an alternative convention.

The first such convention (which we will not use) is called Box Normalization – In this convention the universe is modeled as a very large cubic box of volume V in which the particle is confined, with the value of the wave function required to be equal on opposite faces of the box (what are referred to as periodic boundary conditions). For this box universe, one sets Thus, although the box is large, the wave function is square-normalized. Unfortunately, this makes the spectrum of both energy and momentum discrete, since only wavelengths that just fit within the box are allowed. This unfortunate quantization of the free particle spectrum can be avoided by employing an alternative convention, referred to as...

The first such convention (which we will not use) is called Box Normalization – In this convention the universe is modeled as a very large cubic box of volume V in which the particle is confined, with the value of the wave function required to be equal on opposite faces of the box (what are referred to as periodic boundary conditions). For this box universe, one sets Thus, although the box is large, the wave function is square-normalized. Unfortunately, this makes the spectrum of both energy and momentum discrete, since only wavelengths that just fit within the box are allowed. This unfortunate quantization of the free particle spectrum can be avoided by employing an alternative convention, referred to as...

The first such convention (which we will not use) is called Box Normalization – In this convention the universe is modeled as a very large cubic box of volume V in which the particle is confined, with the value of the wave function required to be equal on opposite faces of the box (what are referred to as periodic boundary conditions). For this box universe, one sets Thus, although the box is large, the wave function is square-normalized. Unfortunately, this makes the spectrum of both energy and momentum discrete, since only wavelengths that just fit within the box are allowed. This unfortunate quantization of the free particle spectrum can be avoided by employing an alternative convention, referred to as...

Dirac or Delta Function Normalization – In this approach one chooses the normalization constant A simply for mathematical convenience, namely, so that the complete set of functions forms a generalized orthonormal set. Definition: Orthonormal Set of Functions A set of functions labeled by a discrete index n forms an orthonormal set of functions on R³ if So this describes a set of square normalized functions, different members of which are said to be orthogonal, rather like the dot product of a set of orthogonal unit vectors.

Dirac or Delta Function Normalization – In this approach one chooses the normalization constant A simply for mathematical convenience, namely, so that the complete set of functions forms a generalized orthonormal set. Definition: Orthonormal Set of Functions A set of functions labeled by a discrete index n forms an orthonormal set of functions on R³ if So this describes a set of square normalized functions, different members of which are said to be orthogonal, rather like the dot product of a set of orthogonal unit vectors.

Dirac or Delta Function Normalization – In this approach one chooses the normalization constant A simply for mathematical convenience, namely, so that the complete set of functions forms a generalized orthonormal set. Definition: Orthonormal Set of Functions A set of functions labeled by a discrete index n forms an orthonormal set of functions on R³ if So this describes a set of square normalized functions, different members of which are said to be orthogonal, rather like the dot product of a set of orthogonal unit vectors.

One can define orthonormal sets of functions on other domains as well, such as the real axis, or some finite subset thereof. For our free particle eigenfunctions, we need a generalization of this idea of orthonormality to include continuously-indexed sets of functions. Note: the continuous analog of the Kronecker delta function is the Dirac delta function. This suggests the following natural extension of this idea: Generalized Definition: Orthonormal Set of Functions A set of functions labeled by a continuous index  forms an orthonormal set of functions on R³ if Such a set is said to be Dirac normalized, or delta function normalized.

One can define orthonormal sets of functions on other domains as well, such as the real axis, or some finite subset thereof. For our free particle eigenfunctions, we need a generalization of this idea of orthonormality to include continuously-indexed sets of functions. Note: the continuous analog of the Kronecker delta function is the Dirac delta function. This suggests the following natural extension of this idea: Generalized Definition: Orthonormal Set of Functions A set of functions labeled by a continuous index  forms an orthonormal set of functions on R³ if Such a set is said to be Dirac normalized, or delta function normalized.

One can define orthonormal sets of functions on other domains as well, such as the real axis, or some finite subset thereof. For our free particle eigenfunctions, we need a generalization of this idea of orthonormality to include continuously-indexed sets of functions. Note: the continuous analog of the Kronecker delta function is the Dirac delta function. This suggests the following natural extension of this idea: Generalized Definition: Orthonormal Set of Functions A set of functions labeled by a continuous index  forms an orthonormal set of functions on R³ if Such a set is said to be Dirac normalized, or delta function normalized.

One can define orthonormal sets of functions on other domains as well, such as the real axis, or some finite subset thereof. For our free particle eigenfunctions, we need a generalization of this idea of orthonormality to include continuously-indexed sets of functions. Note: the continuous analog of the Kronecker delta function is the Dirac delta function. This suggests the following natural extension of this idea: Generalized Definition: Orthonormal Set of Functions A set of functions labeled by a continuous index  forms an orthonormal set of functions on R³ if Such a set is said to be Dirac normalized, or delta function normalized.

One can define orthonormal sets of functions on other domains as well, such as the real axis, or some finite subset thereof. For our free particle eigenfunctions, we need a generalization of this idea of orthonormality to include continuously-indexed sets of functions. Note: the continuous analog of the Kronecker delta function is the Dirac delta function. This suggests the following natural extension of this idea: Generalized Definition: Orthonormal Set of Functions A set of functions labeled by a continuous index  forms an orthonormal set of functions on R³ if Such a set is said to be Dirac normalized, or delta function normalized.

As before, functions corresponding to different values of the continuous index are said to be orthogonal, since the integral vanishes for this situation. But the functions in this set are not square normalized to unity: when the value of the two continuous indices are the same, the argument of the delta function vanishes, and the integral of the squared magnitude is then found to be infinite (as occurs for the free particle energy eigenstates). Thus, in dealing with eigenfunctions of observables with continuous eigenvalues, we will choose the normalization so the associated set of eigenfunctions forms a generalized orthonormal set of functions, properly Dirac normalized, as defined above.

As before, functions corresponding to different values of the continuous index are said to be orthogonal, since the integral vanishes for this situation. But the functions in this set are not square normalized to unity: When the value of the two continuous indices are the same, the argument of the delta function vanishes, and the integral of the squared magnitude is then found to be infinite (as occurs for the free particle energy eigenstates). Thus, in dealing with eigenfunctions of observables with continuous eigenvalues, we will choose the normalization so the associated set of eigenfunctions forms a generalized orthonormal set of functions, properly Dirac normalized, as defined above.

As before, functions corresponding to different values of the continuous index are said to be orthogonal, since the integral vanishes for this situation. But the functions in this set are not square normalized to unity: when the value of the two continuous indices are the same, the argument of the delta function vanishes, and the integral of the squared magnitude is then found to be infinite (as occurs for the free particle energy eigenstates). Therefore, to deal with eigenfunctions of observables with continuous eigenvalues, we will choose the normalization so the associated set of eigenfunctions forms a generalized orthonormal set of functions, properly Dirac normalized, as defined above.

Thus, for the free particle, we need to choose the value of the normalization constant A so that the eigenfunctions of energy and momentum form a generalized orthonormal set, i.e., so that which implies A change of variable in the plane wave representation of the 1D delta function leads to

Thus, for the free particle, we need to choose the value of the normalization constant A so that the eigenfunctions of energy and momentum form a generalized orthonormal set, i.e., so that which implies A change of variable in the plane wave representation of the 1D delta function leads to

Thus, for the free particle, we need to choose the value of the normalization constant A so that the eigenfunctions of energy and momentum form a generalized orthonormal set, i.e., so that which implies A change of variable in the plane wave representation of the 1D delta function leads to

Thus, for the free particle, we need to choose the value of the normalization constant A so that the eigenfunctions of energy and momentum form a generalized orthonormal set, i.e., so that which implies A change of variable in the plane wave representation of the 1D delta function leads to

Thus, for the free particle, we need to choose the value of the normalization constant A so that the eigenfunctions of energy and momentum form a generalized orthonormal set, i.e., so that which implies A change of variable in the plane wave representation of the 1D delta function leads to

Thus, for the free particle, we need to choose the value of the normalization constant A so that the eigenfunctions of energy and momentum form a generalized orthonormal set, i.e., so that which implies A change of variable in the plane wave representation of the 1D delta function leads to

A similar integral in y and z leads to the 3D version: Comparing this to our previous expression we deduce that to have Dirac normalized plane waves we must set giving, finally

A similar integral in y and z leads to the 3D version: Comparing this to our previous expression we deduce that to have Dirac normalized plane waves we must set giving, finally

A similar integral in y and z leads to the 3D version: Comparing this to our previous expression we deduce that to have Dirac normalized plane waves we must set giving, finally

A similar integral in y and z leads to the 3D version: Comparing this to our previous expression we deduce that to have Dirac normalized plane waves we must set giving, finally

A similar integral in y and z leads to the 3D version: Comparing this to our previous expression we deduce that to have Dirac normalized plane waves we can set, giving, finally

A similar integral in y and z leads to the 3D version: Comparing this to our previous expression we deduce that to have Dirac normalized plane waves we can set, for Dirac normalized plane waves, or free energy eigenstates.

Having obtained normalized plane waves, we note in passing, that the eigenfunctions that we deduced earlier for the position operator are actually already Dirac normalized, because which is readily observed to be an example of the Dirac normalization condition.

Having obtained normalized plane waves, we note in passing, that the eigenfunctions that we deduced earlier for the position operator are actually already Dirac normalized, because which is readily observed to be an example of the Dirac normalization condition.

Having obtained normalized plane waves, we note in passing, that the eigenfunctions that we deduced earlier for the position operator are actually already Dirac normalized, because which is readily observed to be an example of the Dirac normalization condition.

Having obtained normalized plane waves, we note in passing, that the eigenfunctions that we deduced earlier for the position operator are actually already Dirac normalized, because which is readily observed to be an example of the Dirac normalization condition.

Having obtained normalized plane waves, we note in passing, that the eigenfunctions that we deduced earlier for the position operator are actually already Dirac normalized, because which is readily observed to be an example of the Dirac normalization condition.

Having obtained normalized plane waves, we note in passing, that the eigenfunctions that we deduced earlier for the position operator are actually already Dirac normalized, because which is readily observed to be an example of the Dirac normalization condition.

Having determined a complete, appropriately normalized set of free particle eigenstates and the associated energy eigenvalues we have completed the first step in solving the initial value problem for a free particle. To proceed, we need to carry out the second step: find the amplitudes that allow us to expand the initial state as a linear superposition of energy or momentum eigenfunctions (which, as we have seen, are the same thing for a free particle).

Having determined a complete, appropriately normalized set of free particle eigenstates and the associated energy eigenvalues we have completed the first step in solving the initial value problem for a free particle. To proceed, we need to carry out the second step: find the amplitudes that allow us to expand the initial state as a linear superposition of energy or momentum eigenfunctions (which, as we have seen, are the same thing for a free particle).

Having determined a complete, appropriately normalized set of free particle eigenstates and the associated energy eigenvalues we have completed the first step in solving the initial value problem for a free particle. To proceed, we need to carry out the second step: find the amplitudes that allow us to expand the initial state as a linear superposition of energy or momentum eigenfunctions (which, as we have seen, are the same thing for a free particle).

Having determined a complete, appropriately normalized set of free particle eigenstates and the associated energy eigenvalues we have completed the first step in solving the initial value problem for a free particle. To proceed, we need to carry out the second step: find the amplitudes that allow us to expand the initial state as a linear superposition of energy or momentum eigenfunctions (which, as we have seen, are the same thing for a free particle).

This important 2nd step is carried out in the next lecture