Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 15: Background Information for the VMWare ESX Memory Management.

Slides:



Advertisements
Similar presentations
Page Replacement Algorithms
Advertisements

Module 10: Virtual Memory
Chapter 10: Virtual Memory
Page Replacement Algorithms (Virtual Memory)
Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical.
Chapter 9: Virtual Memory
Operating Systems Prof. Navneet Goyal Department of Computer Science & Information Systems BITS, Pilani.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 38 Frame Allocation Read.
03/31/2004CSCI 315 Operating Systems Design1 Allocation of Frames & Thrashing (Virtual Memory)
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Module 9: Virtual Memory
Advanced Operating Systems - Spring 2009 Lecture 17 – March 23, 2009 Dan C. Marinescu Office: HEC 439 B. Office hours:
Module 10: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging.
Virtual Memory Background Demand Paging Performance of Demand Paging
Virtual Memory Introduction to Operating Systems: Module 9.
Virtual-Memory Management
Gordon College Stephen Brinton
Virtual Memory CS 3100 Virutal Memory.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 10: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 10: Virtual Memory.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Revisiting Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
03/29/2004CSCI 315 Operating Systems Design1 Page Replacement Algorithms (Virtual Memory)
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Page 19/17/2015 CSE 30341: Operating Systems Principles Optimal Algorithm  Replace page that will not be used for longest period of time  Used for measuring.
Part 8: Virtual Memory. Silberschatz, Galvin and Gagne ©2005 Virtual vs. Physical Address Space Each process has its own virtual address space, which.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual-Memory Management. 9.2Operating System Principles Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Background Virtual memory –
Operating System Concepts 7th Edition Abraham SilBerschatz Peter Baer Galvin Greg Gagne Prerequisite: CSE212.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Operating.
Operating Systems CMPSC 473 Virtual Memory Management (3) November – Lecture 20 Instructor: Bhuvan Urgaonkar.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Page Replacement Allocation of.
9.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Outline n Background n Demand.
Chapter 9: Virtual Memory. 9.2 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped.
10.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts with Java Chapter 10: Virtual Memory Background Demand Paging Process Creation Page.
CSC 360, Instructor: Kui Wu Memory Management II: Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Virtual Memory Virtual memory – separation of user logical memory from physical memory.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2007 Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Chapter 9: Virtual Memory.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 9: Virtual-Memory Management 9.1 Background.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples (not covered.
Silberschatz, Galvin and Gagne ©2011 Operating System Concepts Essentials – 8 th Edition Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging Process.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Background Virtual memory – separation of user logical memory.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
Chapter 9: Virtual Memory
Module 9: Virtual Memory
5: Virtual Memory Background Demand Paging
Chapter 6 Virtual Memory
Operating Systems CMPSC 473
Module 9: Virtual Memory
Virtual Memory.
Presentation transcript:

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 15: Background Information for the VMWare ESX Memory Management paper

14.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Shared Pages 40 users, all running the same editor: 150KB of code + 50KB of data each. How much physical memory needed with shared pages?

14.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Performance of Demand Paging Page Fault Rate 0  p  1.0 if p = 0 no page faults if p = 1, every reference is a fault Effective Access Time (EAT) EAT = (1 – p) x memory access + p (page fault overhead + swap page out + swap page in + restart overhead )

14.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Demand Paging Example Memory access time = 200 nanoseconds Average page-fault service time = 8 milliseconds EAT = (1 – p) x p (8 milliseconds) = (1 – p x p x 8,000,000 = p x 7,999,800 If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds. This is a slowdown by a factor of 40!!

14.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Replacement

14.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Replacement Algorithms Performance objective: lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string Common page replacement algorithms: FIFO Least Recently Used Optimal (theoretical only) Counting: LFU and MFU... Countless others in the literature

14.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Allocation of Frames Each process needs minimum number of pages Two major allocation schemes fixed allocation priority allocation Global vs. local page replacement Global replacement – process selects a replacement frame from the set of all frames; one process can take a frame from another Local replacement – each process selects from only its own set of allocated frames

14.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Fixed Allocation Equal allocation – For example, if there are 100 frames and 5 processes, give each process 20 frames. Proportional allocation – Allocate according to the size of process

14.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Priority Allocation Use a proportional allocation scheme using priorities rather than size If process P i generates a page fault, select for replacement one of its frames select for replacement a frame from a process with lower priority number

14.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition First-In-First-Out (FIFO) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 3 frames (3 pages can be in memory at a time per process) 4 frames Belady’s Anomaly: more frames  more page faults page faults page faults 4 43

14.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FIFO Page Replacement

14.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FIFO Illustrating Belady’s Anomaly

14.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition First-In-First-Out (FIFO) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 3 frames (3 pages can be in memory at a time per process) 4 frames Belady’s Anomaly: more frames  more page faults page faults page faults 4 43

14.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FIFO Page Replacement

14.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FIFO Illustrating Belady’s Anomaly

14.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Optimal Algorithm Replace page that will not be used for longest period of time 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 Used for measuring how well a new algorithm performs page faults 4 5

14.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Optimal Page Replacement

14.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 Counter implementation Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter When a page needs to be changed, look at the counters to determine which are to change

14.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition LRU Page Replacement

14.20 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Counting Algorithms Keep a counter of the number of references that have been made to each page LFU Algorithm: replaces page with smallest count MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used

14.21 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Thrashing If a process does not have “enough” pages: high page-fault rate: low CPU utilization OS thinks that it needs to increase the degree of multiprogramming another process added to the system Thrashing  a process is busy swapping pages in and out

14.22 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Demand Paging and Thrashing Why does demand paging work? Locality model Process migrates from one locality to another Localities may overlap Why does thrashing occur?  size of locality > total memory size

14.23 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Locality In A Memory-Reference Pattern

14.24 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Working-Set Model   working-set window  a fixed number of page references Example: 10,000 instruction WSS i (working set of Process P i ) = total number of pages referenced in the most recent  (varies in time) if  too small will not encompass entire locality if  too large will encompass several localities if  =   will encompass entire program D =  WSS i  total demand frames if D > m  Thrashing Policy: if D > m, then suspend one of the processes

14.25 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Working-set model

14.26 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page-Fault Frequency Scheme Establish “acceptable” page-fault rate If actual rate too low, process loses frame If actual rate too high, process gains frame

14.27 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Working Sets and Page Fault Rates

14.28 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Memory-Mapped Files Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory A file is initially read using demand paging. A page-sized portion of the file is read from the file system into a physical page. Subsequent reads/writes to/from the file are treated as ordinary memory accesses. Simplifies file access by treating file I/O through memory rather than read() write() system calls Also allows several processes to map the same file allowing the pages in memory to be shared