Metamorphic Rocks.

Slides:



Advertisements
Similar presentations
Metamorphic Rocks.
Advertisements

“If something is gneiss, don’t take it for granite.”
Lecture 6 Metamorphic Rocks
Metamorphic Rocks.
Metamorphism and Metamorphic Rocks
H.W. #3 + Read Solar Nebula Theory Study Guide for exam 2 Study Area for lab has practice exam All missed labs must be made up before lab exam All missed.
Metamorphism The transformation of rock by temperature and pressure Metamorphic rocks are produced by transformation of: Igneous, sedimentary and igneous.
Metamorphism: New Rocks from Old
Metamorphic Rocks.
Metamorphic Rocks. What is metamorphic? These rocks were at one time either sedimentary or igneous. (The parent rocks) A change must occur to be classified.
4-4 pgs IN: What are some ways that sedimentary rock can form? Can you classify the four we looked at?
Metamorphism. Metamorphism Rock Environments Metamorphic Environments.
GEOL- 103 Lab 2: Igneous/Metamorphic Rocks. Igneous Rocks Form as molten rock cools and solidifies General characteristics of magma Parent material.
Chapter 8 Metamorphism and Metamorphic Rocks. Metamorphism The transition of one rock into another by temperatures and/or pressures unlike those in which.
Metamorphism and Metamorphic Rocks
Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphic gneiss from Greenland, 3.7 Ba.
Chapter 9 (part I): Metamorphic Rocks Study Help for Chapter 9 Definition of metamorphism, its causes, and the agents of metamorphism. Textures of metamorphic.
Metamorphic Rocks. Standards  Classify matter in a variety of ways  Describe the composition and structure of Earth’s materials, including: the major.
Metamorphic Rocks. Metamorphic Rocks: form when heat and/or pressure change pre-existing rocks. – Metamorphism: the process of forming metamorphic rocks.
METAMORPHIC ROCK.
METAMORPHIC ROCKS. METAMORPHISM Alteration of any previously existing rocks by high pressures, high temperatures, and/or chemically active fluids.
Agents of Metamorphism
Chapter 8: Metamorphism & Metamorphic Rocks
Earth Science 3.4 Metamorphic Rock.
METAMORPHIC ROCKS. TERMS Subduction – Descent of one crustal plate beneath another – Creates intense horizontal pressure Preferred orientation – Parallel.
Rocks Section 4 BELLRINGER Describe Igneous rocks Give an example of an igneous rocks.
and Hydrothermal Rocks Physical Geology Chapter 7
Lecture Outlines Physical Geology, 14/e
Metamorphic Rocks. What is a metamorphic rock? Rocks in which minerals, texture and/or structures have been changed by heat and/or pressure.
Lab 7 Metamorphic Rocks. Metamorphic rocks: –rocks changed by T, P, or action of watery hot fluids Protolith: –parent rock –can be ign, sed, mm.
UNIT - 6.  Metamorphism (from the Greek words for “changing form”) is the process by which rising temperature and changes in other environmental conditions.
Metamorphic Rocks.
THE LANGUAGE OF THE EARTH – PART III
Lecture Outlines Physical Geology, 13/e Plummer & Carlson Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Metamorphic Rocks.
3.4 Metamorphic Rocks Metamorphism – “to change form” I. Formation of Metamorphic Rocks - Most changes occur at high temperatures and pressures a few km.
Metamorphic Rocks Metamorphism refers to solid-state changes to rocks in Earth’s interior Produced by increased heat, pressure, or the action of hot, reactive.
Metamorphic Rocks.
Metamorphism and Metamorphic Rocks
Metamorphic Rocks.
Metamorphic Rocks How a little bit of heat & pressure transform rocks!
Metamorphic Rocks (الصخور المتحولة). Metamorphism (التحول) involves the transformation of pre- existing (igneous rocks, sedimentary rocks, and metamorphic.
Metamorphic Rocks. What is Metamorphism? The transformation of a parent rock into a new rock (new minerals and/or new texture). This happens in the solid-state.
Metamorphism and Metamorphic Rocks. Metamorphism The transformation of rock by temperature and pressure Metamorphic rocks are produced by transformation.
Metamorphic Rocks
Lecture 6 Metamorphic Rocks
How a little bit of heat & pressure transform rocks!
Looking at the pictures, what do you think metamorphic rocks are?
How are Metamorphic Rocks Classified?
METAMORPHIC ROCKS Rocks that form from other pre-existing rock (sedimentary, igneous, or metamorphic) that have been changed from high temperature and/or.
Metamorphic rocks Today’s Chapter 8: Lecture
Metamorphic Rocks.
METAMORPHIC ROCKS.
Earth Science Metamorphic rock.
Metamorphism means to “change form”
Chapter 7 Part 1 Lecture What are metamorphic rocks?
Metamorphic Rocks Chapter 7
Metamorphic rocks Vocabulary to know:
Metamorphic Rock Review
METAMORPHIC ROCKS.
Unit 3 - Rock Types Metamorphic Rocks.
Metamorphic Rocks.
Metamorphic Rocks Section 3.4.
Earth Science Chapter 3 Section 4
Metamorphic Rocks.
METAMORPHIC ROCKS Rocks that form from other pre-existing rock (sedimentary, igneous, or metamorphic) that have been changed from high temperature and/or.
Earth Science Metamorphic rockS.
Metamorphic Rock Igneous and sedimentary rock subjected to intense heat and pressure are transformed into metamorphic rock. Minerals within the rocks are.
Changing form due to heat and/or pressure
Looking at the pictures, what do you think metamorphic rocks are?
Presentation transcript:

Metamorphic Rocks

Metamorphic Rocks Metamorphic rocks are produced from preexisting igneous, sedimentary, or from other metamorphic rocks. Every metamorphic rock has a parent rock – the rock from which it was formed. Metamorphism, which means to “change form,” is a process that leads to changes in the mineralogy, texture, and sometimes the chemical composition of rocks. Factors that might cause a rock to alter from one form to another includes changes in temperature, pressure (stress), and the introduction to chemically active fluids. Metamorphism often progresses incrementally, from slight changes (low-grade metamorphism) to substantial changes (high-grade metamorphism). An example of low-grade would be shale turning into slate when put under pressure (stress). In high-grade changes, slight melting may occur, as well as folds or obliteration of fossils or vesicles in the parent rock.

Examples of Metamorphic Rocks Quartzite Slate Gneiss Marble Phyllite Schist

What Drives Metamorphism? The agents of metamorphism include heat, pressure (stress), and chemically active fluids. During metamorphism, rocks may be subjected to all three metamorphic agents simultaneously. Heat is the most important of metamorphism because it provides the energy to drive chemical reactions that result in the recrystallization of existing materials and/or the formation of new materials. Earth’s internal heat comes mainly from radioactive decay within the Earth’s interior.

What Drives Metamorphism? Pressure, like temperature, increases as you get deeper into the Earth. Buried rocks are subjected to this pressure, called confining pressure, which causes the spaces between mineral grains to close, producing a more compact rock having a greater density. This pressure may ultimately cause minerals to recrystallize into new minerals that a display a more compact form. Unlike confining pressure, which “squeezes” rock equally in all directions (and does not fold or deform them), differential stress, where forces pushing on the rocks are unequal, can create folds and deformation. This is especially prominent at convergent plate boundaries.

Metamorphic Rock Textures Texture is used to describe the size, shape, and arrangement of grains within a rock. Most igneous and sedimentary rocks consist of mineral grains that have a random orientation. By contrast, deformed metamorphic rocks that contain platy minerals (micas) and/or elongated minerals (amphiboles) typically display some kind of preferred orientation in which the mineral grains exhibit a parallel or specific alignment. This preferred orientation of a rock’s minerals is called a foliated texture. Mica Schist Gedrite

Examples of Foliated Textures Various types of foliation exist, depending largely upon the grade of metamorphism and the mineralogy of the parent rock. We’ll look at three main types of foliation: rock or slaty cleavage; schistosity; and gneissic texture. Rock or Slaty Cleavage: This type of foliated texture describes a rock’s tendency to break or cleave along a specific crystal plane. Slate is a rock with excellent rock cleavage, as it breaks in flat slabs.

Examples of Foliated Textures Schistosity: This type of foliated texture describes a rock created with large, platy minerals (such as mica and chlorite) that have grown large enough to be seen by the unaided eye. In addition to platy minerals, schist often contains deformed quartz and feldspar grains that appear as flat, or lens-shaped, grains hidden among the mica grains.

Examples of Foliated Textures Gneissic Texture: During high-grade metamorphism, ion migrations can result in the segregation of minerals. Although foliated, gneisses will not usually split as easily as slates and schists. Gneisses that do cleave tend to break parallel to their foliation and expose mica-rich surfaces that resemble schist.

Foliated Metamorphic Rocks Slate Gneiss Schist Phyllite

Other Metamorphic Textures Not all metamorphic rocks exhibit a foliated texture. Those that do not are referred to as nonfoliated. Nonfoliated textures usually form in environments where parent rocks are composed of minerals that exhibit equidimensional crystals, such as quartz or calcite. Another texture common to metamorphic rocks consists of particularly large grains, called porphyroblasts, that are surrounded by a fine-grained matrix of other minerals. Porphyroblastic textures develop in a wide range of environments and result in very large specimens of certain minerals, such as garnets.

Nonfoliated Metamorphic Rocks Marble Quartzite

The exterior of the Taj Mahal is constructed mainly of the metamorphic rock marble.

Metamorphic Environments Hydrothermal metamorphism occurs when hot fluids circulate through fissures and cracks that develop in rock. This hot fluid chemically alters rocks and is closely related to igneous activity.

Metamorphic Environments There are a number of environments in which metamorphism occurs. Most are in the vicinity of plate margins, and many are associated with igneous activity. Contact or thermal metamorphism occurs when rocks immediately surrounding a molten igneous body are “baked” and therefore altered from their original state.

Metamorphic Environments Regional metamorphism occurs where rocks are squeezed between two converging lithospheric plates during mountain building.

The typical transition in mineralology that results from progressive metamorphism of shale.