Prospects for the Planck Satellite: limiting the Hubble Parameter by SZE/X-ray Distance Technique R. Holanda & J. A. S. Lima (IAG-USP) I Workshop “Challenges.

Slides:



Advertisements
Similar presentations
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
Advertisements

Observational Constraints on Sudden Future Singularity Models Hoda Ghodsi – Supervisor: Dr Martin Hendry Glasgow University, UK Grassmannian Conference.
CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
Dark Energy Observations of distant supernovae and fluctuations in the cosmic microwave background indicate that the expansion of the universe is accelerating.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Marek Kowalski Moriond Cosmology The “Union” Supernova Ia Compilation and new Cosmological Constraints Marek Kowalski Humboldt Universität.
Modern Cosmology: The History of the History of the Universe Alex Drlica-Wagner SASS June 24, 2009.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 9; February
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
CfA Oct Determining the Cosmic Distance Scale with Galaxy Clusters Erik Reese University of California, Berkeley.
PRE-SUSY Karlsruhe July 2007 Rocky Kolb The University of Chicago Cosmology 101 Rocky I : The Universe Observed Rocky II :Dark Matter Rocky III :Dark Energy.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
K.S. Dawson, W.L. Holzapfel, E.D. Reese University of California at Berkeley, Berkeley, CA J.E. Carlstrom, S.J. LaRoque, D. Nagai University of Chicago,
THE GAMMA-RAY BURST HUBBLE DIAGRAM TO z=6.6 Brad Schaefer Louisiana State University HUBBLE DIAGRAMS  PLOT DISTANCE vs. REDSHIFT  SHAPE OF PLOT  EXPANSION.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Modelling and measuring the Universe the UniverseSummary Volker Beckmann Joint Center for Astrophysics, University of Maryland, Baltimore County & NASA.
Constraining Galactic Halos with the SZ-effect
Planck Cosmology 2015 The nearly exact degeneracy -- i.e., nearly the same CMB anisotropies in models with different geometries but the same matter content.
Attempts to fit/understand models: Number counts of Galaxies – Hubble,Yoshii/Peterson Angular Size Distances - distant radio cores Kellerman.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
A Cosmology Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram Nan Liang Collaborators: Wei-Ke Xiao, Yuan Liu, Shuang-Nan.
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Craig Lawrie Advisor: Dr. John Ruhl Abstract Software is developed for the detection of galaxy clusters in data gathered by the South Pole Telescope (SPT).
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Early times CMB.
Robust cosmological constraints from SDSS-III/BOSS galaxy clustering Chia-Hsun Chuang (Albert) IFT- CSIC/UAM, Spain.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
Our Evolving Universe1 Vital Statistics of the Universe Today… l l Observational evidence for the Big Bang l l Vital statistics of the Universe   Hubble’s.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD 报告人: 段效贤 中国科学院国家天文台 2012 年两岸粒子物理与宇宙学研讨会.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
The measurement of q 0 If objects are observed at large distances of known brightness (standard candles), we can measure the amount of deceleration since.
中国科技大学交叉中心 吴普训 宁波大学理学院 Distance duality relation and cosmic opacity Collaborators: Zhengxiang Li, Jun Chen, Hongwei Yu Li, Wu and Yu, APJL.
A. Ealet, S. Escoffier, D. Fouchez, F. Henry-Couannier, S. Kermiche, C. Tao, A. Tilquin September 2012.
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
Type Ia Supernovae and the Acceleration of the Universe: Results from the ESSENCE Supernova Survey Kevin Krisciunas, 5 April 2008.
Cosmic Inhomogeneities and Accelerating Expansion Ho Le Tuan Anh National University of Singapore PAQFT Nov 2008.
DETERMINATION OF THE HUBBLE CONSTANT FROM X-RAY AND SUNYAEV-ZELDOVICH EFFECT OBSERVATIONS OF HIGH-REDSHIFT GALAXY CLUSTERS MAX BONAMENTE – UNIVERSITY OF.
23 Sep The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun Peking Univ./ CPPM.
Extending the cosmic ladder to z~7 and beyond: using SNIa to calibrate GRB standard candels Speaker: Speaker: Shuang-Nan Zhang Collaborators: Nan Liang,
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
18 - Structure of the Universe. Extragalactic Distance Scale Cepheids M V =-3.35logΠ (B-V) Π=period (days) Novae M V (max)= log(Δm/day)
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
PHY306 1 Modern cosmology 2: More about Λ Distances at z ~1 Type Ia supernovae SNe Ia and cosmology Results from the Supernova Cosmology Project, the High.
Jochen Weller XLI Recontres de Moriond March, 18-25, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, ,
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Two useful methods for the supernova cosmologist: (1) Including CMB constraints by using the CMB shift parameters (2) A model-independent photometric redshift.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Universe Tenth Edition Chapter 23 Galaxies Roger Freedman Robert Geller William Kaufmann III.
A New Route to the Hubble Constant (and Dark Energy) from HST Adam Riess (JHU, STScI) SHOES Collaboration.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
A Cosmology Independent Calibration of GRB Luminosity Relations and the Hubble Diagram Speaker: Speaker: Liang Nan Collaborators: Wei Ke Xiao, Yuan Liu,
Constraining Dark Energy with Double Source Plane Strong Lenses Thomas Collett With: Matt Auger, Vasily Belokurov, Phil Marshall and Alex Hall ArXiv:
Modern cosmology 1: The Hubble Constant
Harrison B. Prosper Florida State University YSP
Do We Live Within a Large Local Void?
The Megamaser Cosmology Project
Probing the Coupling between Dark Components of the Universe
Modern cosmology 1: The Hubble Constant
Complementarity of Dark Energy Probes
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Measurements of Cosmological Parameters
6-band Survey: ugrizy 320–1050 nm
Presentation transcript:

Prospects for the Planck Satellite: limiting the Hubble Parameter by SZE/X-ray Distance Technique R. Holanda & J. A. S. Lima (IAG-USP) I Workshop “Challenges of New Physics in Space” (2009)

Summary The Recent measurements of H 0 Sunyaev-Zeldovich effect (SZE) and X-ray surface brightness technique for measuring distance from galaxy clusters H 0 estimates from SZE/X-ray technique by using some cosmological sceneries Prospects for the Planck Satellite Conclusions Summary

The Hubble Parameter An accurate value for the Hubble parameter has proved extremely challenging. An approach has been to measure distances of nearby objects and use this knowledge to calibrate the brightness of more distant objects compared to the nearby ones. The Hubble Space Telescope Key Project (Freedman et al 2001) calibrated five secondary distance indicators by using a fiducial Cepheid Period-Luminosity (PL) relation based on variables located in the Large Magellanic Cloud (LMC). Distance modulus to LMC adopted = 18.5 ±0.1 mag

The Hubble Parameter measurements Two significant sources of systematic error: The distance to LMC: independent estimates disagree by as much as 0.5 mag. “We note that if the distance modulus to the LMC is 18.3 mag, there will be a resulting 10% increase in the value of H 0 to 79 km/s/Mpc.” (Freedmann et al 2001) * The effect of the metallicity on the Cepheid P-L relation is also controversial. Riess et aI. (2005) and Sandage et al. (2006) analyzed independently the same data (four SNe Ia) and obtained values which are discrepant by twice the systematic erros. Sandage et al. used a metallicity-dependent P-L relation. R05 H 0 = 73 ± 4 Km/s/Mpc ; S06 H 0 = 62 ± 6 Km/s/Mpc

The Hubble Parameter measurements Spergel et al. (WMAP3) obtained H 0 =73 ± 3 km/s/Mpc from CMB (assuming flat spatial geometry, time independent vacuum energy and cold dark matter) More recently, Russel (2009, Journal of astrophysics and astrophysics accepted) by using the morphologically type dependent K-band Tully-Fischer relation obtained H 0 = 83.4 ± 5 km/s/Mpc (218 ScI galaxies) Therefore, it is still very important to improve and compare the estimates of H 0 among independent methods.

Sunyaev-Zeldovich Effect and X-ray + The Sunyaev-Zel'dovich effect is a small distortion of the CMB spectrum provoked by the scattering of the CMB photons by hot electrons in galaxy clusters. When combined with other observations of galaxies clusters such as X-ray emission from the intracluster gas is possible to calculate the angular diameter distance (ADD) from the cluster.

Measurements of the h parameter from ADD (SZE/X-ray) It should be stressed, however, that in the above quoted determinations of the Hubble constant, a specific cosmology was fixed from the very beginning (flat ΛCDM; Ω M =0.3). An interesting possibility to break the degeneracy is a joint analysis involving the ADD, baryon acoustic oscillations (BAO) signature and a CMB signature known as Shift Parameter. In a joint analysis is possible to use a maximum likelihood that can be determined by a χ 2 statistics. We estimate H 0 by using 25 ADD from ellipsoidal geometry clusters obtained from SZE and X-ray surface brightness (De Filippis et al. 2005). But here, we relaxed the flat geometry of the ΛCDM model and tested the dependence of the method with the equation of state parameter.

*(in preparation) ΛCDM Model (Ω k ≠0)Flat ωCDM (p=ωρ)

Prospects for the Planck Mission The Planck satellite is a mission of the European Space Agency (launch Date ). It has been estimated that Planck will see about galaxy clusters over the whole sky via the tSZ e ff ect. So, It will produce a large all-sky sample of clusters with easily computable selection criteria. 0 ≤ z ≤ clusters 10 bins (Δz = 0.05) 18/bin 8% 0.5 ≤ z ≤ clusters 6 bins 16/bin 10% 0.8 ≤ z ≤ 1 64 clusters 4 bins 16/bin 12% ADD error 2. Fiducial Model = ωCDM (h = 0.71; Ω X = 0.7; Ω M = 0.30, ω = ) 1. Fiducial Model = ΛCDM (h = 0.73; Ω k = -0.01; Ω Λ = 0.735; Ω M = ) We simulate this sample of ADD by using two fiducial models with best fits from De Filippis et al. (2005) sample. Currently we have 307 SNe Ia (Union08). Let us now assume that in the near future we will have 340 Galaxy Clusters

Fiducial Model = ΛCDM (h = 0.73; Ω k = -0.01; Ω Λ = 0.736; Ω M = 0.27 )Fiducial Model = ωCDM (h = 0.71; Ωx = 0.7; Ω M = 0.30, ω = ) A larger and better ADD sample supply constraints significantly restrictive on the parameters space. This simple analysis illustrates the interest for obtaining a larger galaxy cluster sample with simultaneous measurements of SZE and X-ray surface brightness.

25 ADD from clusters by using the spherical β-Model to describe the clusters (Bonamente et al sample (2006)) + BAO + SP 25 ADD from clusters by using the elliptical β- model to describe the clusters (De Filippis et al. Sample (2005)) + BAO + SP ΛCDM Local Physics and Cosmology: Effects from Cluster Geometry We cannot see a significant influence of the geometries assumed to describe the cluster on the H 0 measurement.

A better understanding on the intrinsic cluster shape is necessary. Any discrepancy with independent determinations of h must be associated with a possible triaxiality of the clusters. Local Physics and Cosmology: Effects from Cluster Geometry Can the cosmology decides on the geometry of the galaxy clusters?* WMAP3 * In preparation

Conclusions The combination of independent phenomena (SZE/X-ray, BAO and shift parameter) provides an interesting method to constrain the Hubble parameter. The geometry of the ΛCDM universe has an insignificant influence on the h measurements, which also remains statistically the same even applying a flat ωCDM model instead. The central h (≈ 0.73) value derived here is in agreement with others recent estimates coming from WMAP and Hubble Space telescope Key Project, where h=0.73. We assess the ability of the Planck satellite mission, which aims at collecting a large number of galaxy clusters, to obtain more restrictive limits in parameters space (h x Ω M, h x Ω k etc )