What do you mean Mendel’s Random? Talk by Timothy Bates 12 November 2010.

Slides:



Advertisements
Similar presentations
How would you explain the smoking paradox. Smokers fair better after an infarction in hospital than non-smokers. This apparently disagrees with the view.
Advertisements

What are we going to talk about today?
Prenatal Nutrition and IQ: A causal analysis using a Mendelian randomization approach Sarah Lewis.
Jeopardy Gregor Mendel Alleles & Genes Mendel’s Principles Patterns of Inheritance Independent Assortment Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q.
Tutorial #1 by Ma’ayan Fishelson
Genetics SC Biology Standard B The students will be able to predict inherited traits by using the principles of Mendelian Genetics, summarize.
Chapter 11 Introduction to Genetics. Genetics The study of the inheritance of traits.
BIAS AND CONFOUNDING Nigel Paneth. HYPOTHESIS FORMULATION AND ERRORS IN RESEARCH All analytic studies must begin with a clearly formulated hypothesis.
Chance, bias and confounding
Patterns of inheritance
Mendel and the Gene Idea
Processes of Evolution & Genetics Part 1. Learning Objectives: Part 1 1.Demonstrate an understanding of the historical context in which the theory of.
Gregor Mendel Quiz and photos.
Chapter 7: Mendelian Inheritance
Transmission Genetics: Heritage from Mendel 2. Mendel’s Genetics Experimental tool: garden pea Outcome of genetic cross is independent of whether the.
What is Mendelian Randomisation? Frank Dudbridge.
SOME ADDITIONAL POINTS ON MEASUREMENT ERROR IN EPIDEMIOLOGY Sholom May 28, 2011 Supplement to Prof. Carroll’s talk II.
Current Issues in Biology, Volume 6 Scientific American
Introduction of Cancer Molecular Epidemiology Zuo-Feng Zhang, MD, PhD University of California Los Angeles.
You have body cells and gametes.
Quantitative Genetics
You have body cells and gametes.
Chapter 12 Mendel and Heredity.
Mendelian Randomization: Genes as Instrumental Variables David Evans University of Queensland.
CHAPTER 9 Patterns of Inheritance
Epidemiology The Basics Only… Adapted with permission from a class presentation developed by Dr. Charles Lynch – University of Iowa, Iowa City.
NATURE vs. NURTURE.
Chapter 14 Mendel and The Idea of Genes Dr. Joseph Silver.
Chapter 5 Characterizing Genetic Diversity: Quantitative Variation Quantitative (metric or polygenic) characters of Most concern to conservation biology.
GENETICS DEVELOPED FROM CURIOSITY ABOUT INHERITANCE
Patterns of Inheritance By Clark and Garret. Heredity Definition- The transmission of traits from one generation to the next.
Rules of Inheritance The rules of inheritance were unknown when Darwin developed the theory of natural selection The ‘hip’ idea at the time was the ‘blending.
Mendelian Patterns of Inheritance Chapter 9. Introduction Gazelle always produce baby gazelles, not bluebirds.
The Inheritance of Traits  Most children are similar to their parents  Children tend to be similar to siblings  Each child is a combination of parental.
G E N E T I C S A Study of Heredity and Inheritance.
Experimental Design and Data Structure Supplement to Lecture 8 Fall
Leicester Warwick Medical School Health and Disease in Populations Case-Control Studies Paul Burton.
Today: Mendelian Genetics! Intro to Mitosis?. Gregor Mendel, The “Father” of Genetics?
Mendel’s Legacy Genetics is everywhere these days – and it will continue as a dominant force in biology and society for decades to come. Wouldn’t it be.
Reading Health Research Critically The first four guides for reading a clinical journal apply to any article, consider: the title the author the summary.
Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria?
Mendelian Genetics Reading: Chap. 14 I. Intro A. Motivating question B. Mendel II. Mendel’s findings A. Law of segregation B. Law of independent assortment.
Heredity Notes. History Gregor Mendel studied pea plants to see how the traits could be passed down from one generation to another. He found that traits.
An quick overview of human genetic linkage analysis
Genetics and Heredity. Vocabulary Dominant- traits that are expressed. Dominant- traits that are expressed. Recessive- traits that are covered up. Recessive-
Genetics – Study of heredity is often divided into four major subdisciplines: 1. Transmission genetics, deals with the transmission of genes from generation.
Classical (Mendelian) Genetics Gregor Mendel. Vocabulary Genetics: The scientific study of heredity Genetics: The scientific study of heredity Allele:
1 THE WORK OF GREGOR MENDEL OBJECTIVES: 11.1 Describe how Mendel studied inheritance in peas. Summarize Mendel’s conclusion about inheritance. Explain.
THE USE OF GENETIC VARIANTS AS TOOLS FOR EPIDEMIOLOGISTS George Davey Smith MRC Integrative Epidemiology Unit University of Bristol.
A. Heredity: The passing of traits (characters) from parents to offspring B. Genetics: The branch of biology that studies heredity. 1. Gregor Mendel:
1 Study Design Imre Janszky Faculty of Medicine, ISM NTNU.
Chapter 8 Chapter 8 Mendel and Heredity. Chapter 8 Objective: Learn the experiment Mendel performed that led to the modern science of genetics, pp
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 1 Lecture Slides.
Animal breeders use test crosses to determine whether an individual animal ________. 1.is fertile 2.is homozygous dominant or heterozygous 3.is homozygous.
Chapter 9. Vocabulary  Heredity: the transmission of traits from one generation to the next  Genetics: the scientific study of heredity  Character:
Validity in epidemiological research Deepti Gurdasani.
Chapter 6, sections Mendelian Genetics.
Bio.B.2- Genetics CHAPTER 11.
Population Dynamics Humans, Sickle-cell Disease, and Malaria
Different mode and types of inheritance
Mendelian Genetics Reading: Chap. 14 I. Intro II. Mendel’s findings
MENDEL AND THE GENE IDEA OUTLINE
Mendel and Punnett Squares
Bio 1005 Chapter 8 Mendel and The Idea of Genes Dr. Joseph Silver
Unit 5: Heredity Review Lessons 1, 3, 4 & 5.
Mendelian Randomization (Using genes to tell us about the environment)
The objective of this lecture is to know the role of random error (chance) in factor-outcome relation and the types of systematic errors (Bias)
Chapter Two The Study of Heredity.
Mendelian Randomization (Using genes to tell us about the environment)
Mendelian Randomization: Genes as Instrumental Variables
Presentation transcript:

What do you mean Mendel’s Random? Talk by Timothy Bates 12 November 2010

Target Article George Davey Smith (2010). Mendelian Randomization for Strengthening Causal Inference in Observational Studies : Application to Gene × Environment Interactions Perspectives on Psychological Science (2010) 5: 527 DOI: /

Abstract Identification of environmentally modifiable factors causally influencing disease risk is fundamental to public-health improvement strategies. Unfortunately, observational epidemiological studies are limited in their ability to reliably identify such causal associations, reflected in the many cases in which conventional epidemiological studies have apparently identified such associations that randomized controlled trials have failed to verify. The use of genetic variants as proxy measures of exposure —an application of the Mendelian randomization principle—can contribute to strengthening causal inference. Genetic variants are not subject to bias due to – reverse causation (disease processes influencing exposure, rather than vice versa) – or recall bias, and if simple precautions are applied, they are not influenced by – confounding or attenuation by errors. The principles of Mendelian randomization are illustrated with specific reference to studies of the effects of alcohol intake on various health- related outcomes through the – utilization of genetic variants related to alcohol metabolism (in ALDH2 and ADH1B). Ways of incorporating Gene Environment interactions into the Mendelian randomization framework are developed, and the strengths and limitations of the approach discussed.

Darwin’s (again) In 1875, George Darwin, the second son and fifth child of Charles Darwin, reviewed evidence on the putative detrimental effects of cousin marriages on offspring health, something of personal interest to him as he was the product of such a union (G.H. Darwin, 1875). He concluded by reviewing the most comprehensive studies of the issue and described what maybe the first presentation of Gene Environment interaction informed by at least some understanding of heredity. ‘‘Dr. Mitchell had come to the conclusion that under favorable conditions of life, the apparent ill effects were frequently almost nil, whilst if the children were ill-fed, badly housed and clothed, the evil might become very marked. This is in striking accordance with some unpublished experiments of my father, Mr. Charles Darwin, on the in-and-inbreeding of plants; for he has found that in-bred plants; when allowed enough space and good soil, frequently show little or no deterioration, whilst when placed in competition with another plant, they frequently perish or are much stunted.’’ The unpublished findings of Charles Darwin were later published in his 1876 book The Effects of Cross and Self Fertilization in the Vegetable Kingdom (C. Darwin, 1876).

Problems with G*E The effects of cousin marriage, which would now be considered to reflect disorders generated by homozygosity for uncommon variants, were apparently mainly seen in suboptimal environmental circumstances. There are clearly echoes here of celebrated contemporary Gene Environment interactions, such as that between genetic variation in the serotonin transporter gene (5-HTTLPR), stressful life events, and the risk of depression (Caspi et al., 2003). Recent examples of Gene Environment interaction in the molecular genetic age (Caspi et al., 2003, 2007), which have failed to stand up to rigorous attempts at replication – (Risch et al., 2009; – Steer, Davey Smith, Emmett, Hibbeln, & Golding, in press)

Mendelian Randomization: What Is It and How Does It Work? The basic reasoning If genetic variants either alter the level of or mirror the biological effects of a modifiable environmental exposure that itself alters disease risk, then these genetic variants should be related to disease risk to the extent predicted by their influence on exposure to the risk factor. Common genetic polymorphisms that have a well- characterized biological function(or are markers for such variants) can therefore be utilized to study the effect of a suspected environmental exposure on disease risk – (Davey Smith, 2006a; Davey Smith & Ebrahim,2003; Davey Smith & Ebrahim, 2004; Davey Smith & Ebrahim,2005; Davey Smith, Timpson, & Ebrahim, 2008; Ebrahim &Davey Smith, 2008; Lawlor et al., 2008).

Caveats The variants should not have an association with the disease outcome except through their link to the modifiable risk process of interest.

Why not measure the environment? It may seem counterintuitive to study genetic variants as proxies for environmental exposures rather than measure the exposures themselves. Several crucial advantages of utilizing functional genetic variants in this manner – Confounding – Independence of genes (segregation) – Reverse Causation

1. Confounding – Unlike environmental exposure, genetic variants are not generally associated with the wide range of behavioral, social, and physiological factors that can confound associations. – This means that if a genetic variant is used as a proxy for an environmentally modifiable exposure, it is unlikely to be confounded in the way that direct measures of the exposure will be.

Segregation and linkage Further, aside from the effects of population structure, (Palmer & Cardon, 2005), such variants will not be associated with other genetic variants, except through linkage disequilibrium (the association of alleles located close together on a chromosome). – Contrast this with the environment – But think of assortative mating

2. Reverse Causation Inferences drawn from observational studies maybe subject to bias due to reverse causation. – Disease processes may influence exposure levels (alcohol intake) Measures of intermediate phenotypes (such as cholesterol levels andC-reactive protein) germline genetic variants – Association with average exposure (alcohol intake) or intermediate phenotypes (circulating CRP) not influenced by the onset of disease

Bias cont… Gene unrelated to: – Reporting bias in Case-control studies (due to knowledge of disease status) – Differential reporting bias in any study design. Cumulative Exposure – A genetic variant will indicate long-term levels of exposure, and, if the variant is considered to be a proxy for such exposure – Avoids measurement error inherent in phenotypes that have high levels of variability. E.g. Cholesterol level-related genotype – cumulative differences in absolute cholesterol levels between the groups. – Forindividuals, blood cholesterol is variable over time, and the use of single measures of cholesterol will underestimate the true strength of association between cholesterol and, for instance, coronary heart disease (CHD). – Indeed, use of the Mendelian randomization approach predicts a strength of association tha tis in line with randomized controlled trial findings of effects of cholesterol lowering, in which the increasing benefits seen over the relatively short trial period are projected to the expectation for differences over a lifetime (Davey Smith &Ebrahim, 2004).

Environmental Intervention In the Mendelian randomization framework, the associations of genotype with outcomes are of interest because of the strengthened inference about the action of the environmental modifiable risk factors that the genotypes proxy for rather than what genotypes say about genetic mechanisms per se. Mendelian randomization studies are aimed at informing strategies to reduce disease risk by influencing the non- genetic component of-modifiable risk processes.

Mendelian Randomization: Is the Principle Sound? Relies on the basic (but approximate) laws of Mendelian genetics. Mendel’s First Law – The probability that a postmeiotic germ cell that has received any particular allele at segregation contributes to a viable conceptus is independent of environment Mendel’s second law – genetic variants sort independently Ergo At a population level, variants will not be associated with the confounding factors that generally distort conventional observational studies. Recognized by R.A. Fisher in the 1920s

1951 Bateson memorial lecture Genetics is indeed in a peculiarly favored condition in that Providence has shielded the geneticist from many of the difficulties of a reliably controlled comparison. The different genotypes possible from the same mating have been beautifully randomized by the meiotic process... Generally speaking, the geneticist, even if he foolishly wanted to, could not introduce systematic errors into the comparison of genotypes, because for most of the relevant time he has not yet recognized them. (Fisher, 1952)

ALDH2 and Alcohol intake

Sex Differences and alternate routes

Alcohol and Blood Pressure

Alcohol and Systolic BP

Maternal and Foetal genotype Nice study showing that mother’s genotype matters (she drinks), not babies (it gets drunk)

MR as RCT

Instrumental Variable

Testing the Gateway Hypothesis Alcohol use is associated with higher rates of illegal substance use. Hypothesis 1: Common social (genetics) or environmental factors H2: Gateway hypothesis: Alcohol use itself increases liability to initiate and maintain use of non-alcohol substance use – (Irons, McGue, Iacono, & Oetting, 2007; Kandel & Yamaguchi, 1993; Kandel, Yamaguchi, & Chen, 1992). Test (Irons et al., 2007). – ALDH2 status associated with alcohol use – Alcohol use was associated with tobacco, marijuana, and other illegal drug use. – But ALDH2 variation not robustly associated with non-alcohol substance use Evidence against the gateway hypothesis

Intermediate phenotypes C-reactive protein (CRP) strongly predictive of Type 2 diabetes and CHD risk BUT: CRP gene related to differences in circulating CRP levels DO NOT influence the risk of these diseases (Lawlor et al., 2008;Timpson et al., 2005). Suggests Pharmacotherapeutically lower CRP levels would not reduce disease risk, despite the strong observational associations. High body mass index (BMI) and cardiovascular risk factors – FTO associated with differences in BMI – AND – FTO predicts risk factor level to the degree expected (Fig 5- (Freathy et al., 2008).

Freathy et al (2008)

G*E Contested history Tabery (2000, 2007 Developmental G*E (Lancelot Hogben) – Developmental trajectories during ontogenesis. Bio-metric tradition (R.A. Fisher) – Interactions affectestimates of heritability. Possible outcomes of gene–environment (Haldane, 1938) – Most Gene * Environment: no clear cross-over, but there is quantitative difference

Haldane

A: Genotype increases expression of the risk factor.

C & D

E

NAT2 example is type B (Fig 9)

Bladder Cancer: NAT2* Smoking

Problems and Limitations of Mendelian Randomization The Mendelian randomization approach provides useful evidence on the influence of modifiable exposures on health out-comes. Limitations (Davey Smith & Ebrahim, 2003; Ebrahim & Davey Smith,2008)

Confounding of Genotype, Modifiable Risk Factors, and Disease Associations Re-introduction of confounding Locus is in linkage disequilibrium (i.e., is associated) with another polymorphic locus, with the former being confounded by the latter. It may seem unlikely, but different polymorphisms influencing alcohol metabolism appear to be in linkage disequilibrium (Osier et al.2002).

Pleiotropy Single intermediate phenotype to a disease outcome. Polymorphisms often influence more than one intermediate phenotype They proxy for more than one environmentally modifiable risk factor.

Responses Group differences (like Japanese male and female drinkers Multiple independent SNPs

Confounding in Studies of Gene*Environment Interactions G*E not as protected from confounding as are main effects NAT2, smoking, and bladder cancer – Any factor related to smoking—such as social class— will tend to show a greater association with bladder cancer within NAT2 slow acetylators than within NAT2 rapid acetylators

Responses Social class is not isomorphic with smoking – Therefore genotype effects will not be dichotomous with class, merely stronger in one than the other Cases where the biological basis of an expected interaction is understood and it is expected to be qualitative are most interpretable

Canalization and Developmental Stability Developmental compensation – Polymorphic genotype expressed during fetal or early postnatal development – Buffers against the effect of the polymorphism Discussed since the notion of canalization in the 1940s – (Waddington,1942) Canalization – Buffering of the effects of either environmental or genetic forces attempting to perturb development (Debat & David, 2001; Gibson &Wagner, 2000; Hartman, Garvik, & Hartwell, 2001; Hornstein& Shomron, 2006; Kitami & Nadeau, 2002; Rutherford, 2000;Wilkins, 1997). Genetic redundancy – More than one gene having the same or similar function – Alternative metabolic routes recruited to reach the same phenotypic endpoint.

The Problem Mendelian Randomization occurs at conception Developmental Canalisation occurs after conception OK when maternal gen-otype is utilized as an indicator of the intrauterine environment – response of the fetus will not differ whether the effect is induced by maternal genotype or by environmental perturbation When a variant influences an adulthood environmental exposure developmental compensation to genotype will not be an issue.