Momentum.

Slides:



Advertisements
Similar presentations
Conservation of Momentum and Collision
Advertisements

Aim: How can we apply conservation of momentum to collisions? Aim: How can we apply conservation of momentum to collisions? Identify conservation laws.
Momentum and Its Conservation - Chapter Outline
Momentum and Collisions Momentum and Impulse. Section Objectives Compare the momentum of different moving objects. Compare the momentum of the same object.
Applying a Force.
Problem of the Day An 1800 kg car stopped at a traffic light is struck from the rear by a 900 kg car, and the two become entangled, moving along the same.
Impulse Momentum, and Collisions
Linear Momentum and Collisions
Impulse, Momentum and Collisions
Q8.1 A ball (mass 0.40 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse.
Conservation of Momentum
Center of Mass and Linear Momentum
objectives 1. Identify different types of collisions.
a) The kinetic energy of the car. b) The distance it takes to stop.
Aim: What is the law of conservation of momentum? Do Now: A 20 kg object traveling at 20 m/s stops in 6 s. What is the change in momentum? Δp = mΔv Δp.
Chapter 9 Momentum & Its Conservation. Determining Impulse F = ma a =  v/  t.
AP Physics Review Ch 7 – Impulse and Momentum
AP Physics Impulse and Momentum. Which do you think has more momentum?
Chapter 7: Linear Momentum (p)
Momentum Momentum is a vector quantity since velocity is a vector.
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
Momentum and Impulse Review 1.The velocity of a moving mass is called? ans: momentum 2.Force applied in a period of time is called? ans: impulse 3. The.
Momentum is a Momentum vectors Impulse Defined as a Impulse is.
CHAPTER 7 MOMENTUM AND COLLISIONS
Momentum and Collisions
Momentum.
1 PPMF102– Lecture 3 Linear Momentum. 2 Linear momentum (p) Linear momentum = mass x velocity Linear momentum = mass x velocity p = mv p = mv SI unit:
Chapter 6 Momentum and Impulse
Momentum and Impulse. Answer Me!!! Forces cause objects to start moving. What keeps an object moving after the force is no longer applied?
Chapter 6 Momentum and Impulse. Momentum The product of an object’s mass and velocity: p = mv Momentum, p, and velocity, v, are vector quantities, meaning.
Reading Quiz - Momentum
AP Physics C I.D Systems of Particles and Linear Momentum.
Momentum!!! Physics Mr. Padilla.
Momentum.
Momentum Introduction to Momentum. What is Momentum? The quantity of motion of a moving body Depends on mass and velocity Measured by multiplying mass.
Linear Motion Review.
Motion/Newtons Physics Review $100 $400 $300 $200 $400 $200 $100$100 $400 $200$200 $500$500 $300 $200 $500 $100 $300 $100 $300 $500 $300 $400$400 $500.
MOMENTUM AND COLLISIONS. Momentum is the product of the mass and velocity of a body. Momentum is a vector quantity that has the same direction as the.
The Law of Conservation of Momentum
Systems of Particles. Rigid Bodies Rigid Bodies - A collection of particles that do not move relative to each other. What forces are present with the.
Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte.
Momentum. What is Momentum? Momentum – tendency of objects to keep going in the same direction with the same speed –Depends on mass and velocity –Has.
Momentum Physics Physics Definition : Linear momentum of an object of mass (m) moving with a velocity (v) is defined as the product of the mass.
Linear Momentum Problems MC Questions Linear Momentum 07 LH.
The force on an object may not be constant, but may vary over time. The force can be averaged over the time of application to find the impulse.
12/20 do now A ball with a momentum of +4.0 kg • m/s hits a wall and bounces straight back without losing any kinetic energy. What is the change in the.
Momentum and Collisions Momentum and Impulse  The momentum of an object is the product of its mass and velocity: p=mv  Units of momentum: kg·m/s.
Lecture 13: Momentum. Questions of Yesterday 1) A mass with speed v hits a horizontal spring and compresses it a distance d. If the the speed of the mass.
We will be playing Jeopardy today! Please come up with a team name and write it on the board above your team number.
If you apply a force to an object, the effect it has depends on the mass of the object and for how long you exert the force. You apply a constant force,
“The quality of Motion”. Momentum A vector quantity defined as the product of an objects mass and velocity.
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
Chapter 6 Momentum and Impulse. Momentum The product of an object’s mass and velocity: p = mv Momentum, p, and velocity, v, are vector quantities, meaning.
DRILL Calculate a c & F c of a 25 kg ball rotation at the end of a 4.0 m rope at 20.0 revolutions per second.
Physics Chapter 6: Momentum and Collisions.  Force is Not Always Constant  Application of Force May Vary with Time.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Momentum & Impulse Day #1: Introduction HW #7. Momentum & Collisions: Define Momentum: Momentum, p, is defined as the product of mass and velocity. Units:
Unit 4 Review. What is an inelastic collision? What is an elastic collision?
Chapter 6 Momentum and Impulse
Momentum, Impulses, and Collisions. A. Background Information 1.Momentum of an object is anything that has inertia and is moving a. It is based on an.
A fan and a sail are mounted vertically on a cart that is initially at rest on a horizontal table as shown: When the fan is turned on an air stream is.
Conservation of Momentum
Name 3 vectors and 3 scalars.
I. Momentum Product of an objects mass and velocity. ρ = mv
Chapter 7 Impulse and Momentum.
#1 A rubber ball with a mass of 0.185 kg is dropped from rest. From what height was the ball dropped, if the magnitude of the ball's momentum is 0.720 kg · m/s just.
Homework: WS: momentum & impulse
Systems of Particles.
Energy and Momentum.
Presentation transcript:

Momentum

Which object has the greatest momentum? (A) a 5.00-kg mass moving at 10.0 m/s (B) a 10.0-kg mass moving at 1.00 m/s (C) a 15.0-kg mass moving at 10.0 m/s (D) a 20.0-kg mass moving at 1.00 m/s c

What is the speed of a 1. 0×103-kg car that has a momentum of 2 What is the speed of a 1.0×103-kg car that has a momentum of 2.0×104 kg•m/ s east? (A) 5.0 × 10–2 m/s (B) 2.0 × 101 m/s (C) 1.0 × 104 m/s (D) 2.0 × 107 m/s (B) 2.0 × 101 m/s

Impulse

Which two quantities can be expressed using the same units? (A) energy and force (B) impulse and force (C) momentum and energy (D) impulse and momentum d

A 60-kg rollerskater exerts a 10-N force on a 30-kg rollerskater for 0 A 60-kg rollerskater exerts a 10-N force on a 30-kg rollerskater for 0.20 second. What is the magnitude of the impulse applied to the 30-kg rollerskater? (A) 50 N•s (B) 2.0 N•s (C) 6.0 N•s (D) 12 N•s (2) 2.0 N•s

A 60-kg rollerskater exerts a 10-N force on a 30-kg rollerskater for 0 A 60-kg rollerskater exerts a 10-N force on a 30-kg rollerskater for 0.20 second. What is the magnitude of the change in momentum applied to the 30-kg rollerskater? (A) 50 kg•m/s (B) 2.0 kg•m/s (C) 6.0 kg•m/s (D) 12 kg•m/s (2) 2.0 N•s

A 60-kg rollerskater exerts a 10-N force on a 30-kg rollerskater for 0 A 60-kg rollerskater exerts a 10-N force on a 30-kg rollerskater for 0.20 second. What is the magnitude of the change in momentum applied to the 60-kg rollerskater? (A) 50 kg•m/s (B) 2.0 kg•m/s (C) 6.0 kg•m/s (D) 12 kg•m/s (2) 2.0 N•s

A 0.149-kilogram baseball, initially moving at 15 meters per second, is brought to rest in 0.040 second by a baseball glove on a catcher’s hand. What is the magnitude change in momentum exerted on the ball by the glove? -2.235

A 0.149-kilogram baseball, initially moving at 15 meters per second, is brought to rest in 0.040 second by a baseball glove on a catcher’s hand. The magnitude of the average force exerted on the ball by the glove is (A) 2.2 N (B) 2.9 N (C) 17 N (D) 56 N (D) 56 N

(A) accelerating it from rest to 3.0 m/s Which situation will produce the greatest change of momentum for a 1.0-kilogram cart? (A) accelerating it from rest to 3.0 m/s (B) accelerating it from 2.0 m/s to 4.0 m/s (C) applying a net force of 5.0 N for 2.0 s (D) applying a net force of 10.0 N for 0.5 s c

A 0.15-kilogram baseball moving at 20 m/s is stopped by a catcher in 0.010 second. The average force stopping the ball is (A) 3.0×10–2 N (B) 3.0×100 N (C) 3.0×101 N (D) 3.0×102 N d

A 6.0-kilogram block, sliding to the east across a horizontal, frictionless surface with a momentum of 30 kg•m /s, strikes an obstacle. The obstacle exerts an impulse of 10 N•s to the west on the block. The speed of the block after the collision is (A) 1.7 m/s (B) 3.3 m/s (C) 5.0 m/s (D) 20. m/s (B) 3.3 m/s

Elastic

Ball A of mass 5.0 kg moving at 20 m/s collides with ball B of unknown mass moving at 10 m/s in the same direction. After the collision, ball A moves at 10 m/s and ball B at 15 m/s, both still in the same direction. What is the mass of ball B? (A) 6.0 kg (B) 2.0 kg (C) 10. kg (D) 12 kg C

A 1.2-kg block and a 1.8-kg block are initially at rest on a frictionless, horizontal surface. When a compressed spring between the blocks is released, the 1.8-kg block moves to the right at 2.0 m/s. What is the speed of the 1.2-kg block after the spring is released? (A) 1.4 m/s (C) 3.0 m/s (B) 2.0 m/s (D) 3.6 m/s C

Inelastic

A 3. 0-kg steel block is at rest on a friction-less horizontal surface A 3.0-kg steel block is at rest on a friction-less horizontal surface. A 1.0-kg lump of clay is propelled horizontally at 6.0 m/s toward the block. Upon collision, the clay and steel block stick together and move to the right with a speed of (A) 1.5 m/s (B) 3.0 m/s (C) 6.0 m/s (D) 2.0 m/s A

A woman (60-kg) with horizontal velocity (6 m/s) jumps off a dock into a stationary boat (120 kg). After landing in the boat, the woman and the boat move with velocity v2. Find v2 2 m/s

A 3. 1-kilogram gun initially at rest is free to move. When a 0 A 3.1-kilogram gun initially at rest is free to move. When a 0.015-kilogram bullet leaves the gun with a speed of 500 m/s, what is the speed of the gun? (A) 0.0 m/s (B) 2.4 m/s (C) 7.5 m/s (D) 500 m/s (B) 2.4 m/s

At the circus, a 100-kg clown is fired at 15 m/s from a 500-kg cannon At the circus, a 100-kg clown is fired at 15 m/s from a 500-kg cannon. What is the recoil speed of the cannon? (A) 75 m/s (B) 3.0 m/s (C) 15 m/s (D) 5.0 m/s B

An 8. 00-kilogram ball is fired horizontally from a 1 An 8.00-kilogram ball is fired horizontally from a 1.00 × 103-kg cannon initially at rest. After having been fired, the momentum of the ball is 2.40 × 103 kg•m/s east. Calculate the magnitude of the cannon’s velocity after the ball is fired. 2.4 m/s

An 8. 00-kilogram ball is fired horizontally from a 1 An 8.00-kilogram ball is fired horizontally from a 1.00 × 103-kg cannon initially at rest. After having been fired, the momentum of the ball is 2.40 × 103 kg•m/s east. Calculate the magnitude of the cannon ball’s velocity after itis fired. 300 m/s

A 50-kilogram child running at 6 A 50-kilogram child running at 6.0 meters per second jumps onto a stationary 10-kilogram sled. The sled is on a level frictionless surface. Calculate the speed of the sled with the child after she jumps onto the sled. 5 m/s

A 1200-kilogram car moving at 12 meters per second collides with a 2300-kilogram car that is waiting at rest at a traffic light. After the collision, the cars lock together and slide. Eventually, the combined cars are brought to rest by a force of kinetic friction as the rubber tires slide across the dry, level, asphalt road surface. Calculate the speed of the locked-together cars immediately after the collision. 4.1 m/s

Extra

A 2.0-kg laboratory cart is sliding across a horizontal frictionless surface at a constant velocity of 4.0 m/s east. What will be the cart’s velocity after a 6.0-Newton westward force acts on it for 2.0 seconds? (A) 2.0 m/s east (B) 10 m/s east (C) 2.0 m/s west (D) 10 m/s west C

A 1,200-kg car traveling at 10 m/s hits a tree and is brought to rest in 0.10 second. What is the magnitude of the average force acting on the car to bring it to rest? (A) 1.2×102 N (B) 1.2×103 N (C) 1.2×104 N (D) 1.2×105 N D

A 50-kg student threw a 0. 40-kg ball with a speed of 20 m/s A 50-kg student threw a 0.40-kg ball with a speed of 20 m/s. What was the magnitude of the impulse that the student exerted on the ball? (A) 8.0 N•s (B) 78 N•s (C) 4.0 × 102 N•s (D) 1.0 × 103 N•s A

The instant before a batter hits a 0 The instant before a batter hits a 0.14-kilogram baseball, the velocity of the ball is 45 meters per second west. The instant after the batter hits the ball, the ball’s velocity is 35 meters per second east. The bat and ball are in contact for 1.0 × 10–2 second. Calculate the initial momentum of the ball. 6.3 kg m/s

The instant before a batter hits a 0 The instant before a batter hits a 0.14-kilogram baseball, the velocity of the ball is 45 meters per second west. The instant after the batter hits the ball, the ball’s velocity is 35 meters per second east. The bat and ball are in contact for 1.0 × 10–2 second. Calculate the final momentum of the ball. -4.9 kg m/s

The instant before a batter hits a 0 The instant before a batter hits a 0.14-kilogram baseball, the velocity of the ball is 45 meters per second west. The instant after the batter hits the ball, the ball’s velocity is 35 meters per second east. The bat and ball are in contact for 1.0 × 10–2 second. Calculate the change in momentum of the ball. 11.2 kg m/s

The instant before a batter hits a 0 The instant before a batter hits a 0.14-kilogram baseball, the velocity of the ball is 45 meters per second west. The instant after the batter hits the ball, the ball’s velocity is 35 meters per second east. The bat and ball are in contact for 1.0 × 10–2 second. Calculate the impulse that acted on the ball. 11.2 Ns

The instant before a batter hits a 0 The instant before a batter hits a 0.14-kg baseball, the velocity of the ball is 45 meters per second west. The instant after the batter hits the ball, the ball’s velocity is 35 meters per second east. The bat and ball are in contact for 1.0 × 10–2 second. Calculate the magnitude of the average force the bat exerts on the ball while they are in contact. 1120 N

Calculate the magnitude of the impulse applied to a 0 Calculate the magnitude of the impulse applied to a 0.75-kilogram cart to change its velocity from 0.50 meter per second east to 2.00 meters per second east. 1.125 m/s east

A 1000-kilogram car traveling due east at 15 meters per second is hit from behind and receives a forward impulse of 6000 Newton-seconds. Determine the magnitude of the car’s change in momentum due to this impulse. 6000 kg m/s

A 60-kilogram student jumps down from a laboratory counter A 60-kilogram student jumps down from a laboratory counter. At the instant he lands on the floor his speed is 3 meters per second. If the student stops in 0.2 second, what is the average force of the floor on the student? (A) 1×10–2 N (B) 9×102 N (C) 1×102N (D) 4N B

A motorcycle being driven on a dirt path hits a rock A motorcycle being driven on a dirt path hits a rock. Its 60-kilogram cyclist is projected over the handlebars at 20 meters per second into a haystack. If the cyclist is brought to rest in 0.50 second, the magnitude of the average force exerted on the cyclist by the haystack is (A) 6.0 × 101 N (B) 5.9 × 102 N (C) 1.2 × 103 N (D) 2.4 × 103 N (D) 2.4 × 103 N

A 2. 0-kg body is initially traveling at a velocity of 40 m/s east A 2.0-kg body is initially traveling at a velocity of 40 m/s east. If a constant force of 10 Newtons due east is applied to the body for 5.0 seconds, the final speed of the body is (A) 15 m/s (B) 65 m/s (C) 25 m/s (D) 130 m/s A