Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann,

Slides:



Advertisements
Similar presentations
Crab crossing and crab waist at super KEKB K. Ohmi (KEK) Super B workshop at SLAC 15-17, June 2006 Thanks, M. Biagini, Y. Funakoshi, Y. Ohnishi, K.Oide,
Advertisements

Beam-Beam Effects for FCC-ee at Different Energies: at Different Energies: Crab Waist vs. Head-on Dmitry Shatilov BINP, Novosibirsk FCC-ee/TLEP physics.
1 Crossing Angle I.Koop UK SuperB meeting April 26-27, 2006 I.A.Koop, E.A.Perevedentsev, D.N.Shatilov, D.B.Shwartz for the UK SuperB meeting, April 26-27,
Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN.
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
Beam-beam simulations M.E. Biagini, K. Ohmi, E. Paoloni, P. Raimondi, D. Shatilov, M. Zobov INFN Frascati, KEK, INFN Pisa, SLAC, BINP April 26th, 2006.
Beam-Beam Optimization for Fcc-ee at High Energies (120, 175 GeV) at High Energies (120, 175 GeV) Dmitry Shatilov BINP, Novosibirsk 11 December 2014, CERN.
Brain Gestorme: Status of the LHeC Ring-Ring / Linac- Ring Basic Parameters I appologise to talk about things you already know...
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
New Progress of the Nonlinear Collimation System for A. Faus-Golfe J. Resta López D. Schulte F. Zimmermann.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Eric Prebys, FNAL.  In our previous discussion, we implicitly assumed that the distribution of particles in phase space followed the ellipse defined.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
Flat-beam IR optics José L. Abelleira, PhD candidate EPFL, CERN BE-ABP Supervised by F. Zimmermann, CERN Beams dep. Thanks to: O.Domínguez. S Russenchuck,
Luminosity of the Super-Tau-Charm Factory with Crab Waist D. Shatilov BINP, Novosibirsk TAU’08 Workshop, Satellite Meeting “On the Need for a Super-Tau-Charm.
Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Plan for Review of FCC- ee Optics and Beam Dynamics Frank Zimmermann FCC-ee Design Meeting 31 August 2015.
1 BINP Tau-Charm Project 3 February 2010, KEK, Tsukuba E.Levichev For the BINP C-Tau team.
1 Dynamic aperture studies in e+e- factories with crab waist IR’07, November 9, 2007 E.Levichev Budker Institute of Nuclear Physics, Novosibirsk.
Studies on low crossing angle bumps for the LHC luminosity upgrade G. Sterbini Accelerator Technology Department Magnet and Superconductors Group CERN,
08/11/2007M. Giovannozzi – CARE-HHH-APD IR’071 Optics issues for Phase 1 and Phase 2 upgrades Massimo Giovannozzi, CERN Outline: –Option for Phase 1 and.
Lattice design for FCC-ee Bastian Haerer (CERN BE-ABP-LAT, Karlsruhe Institute of Technology (KIT)) 1 8 th Gentner Day, 28 October 2015.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Introduction of Accelerators for Circular Colliders 高亮度 TAU-CHARM 工厂 & 先进光源, 2014/09.
Problems of charge compensation in a ring e+e- higgs factory Valery Telnov Budker INP, Novosibirsk 5 rd TLEP3 workshop, FNAL, July 25, 2013.
Optics with Large Momentum Acceptance for Higgs Factory Yunhai Cai SLAC National Accelerator Laboratory Future Circular Collider Kick-off Meeting, February.
Crossing Schemes Considerations and Beam-Beam Work plan T. Pieloni, J. Barranco, X. Buffat, W. Herr.
Field Quality Specifications for Triplet Quadrupoles of the LHC Lattice v.3.01 Option 4444 and Collimation Study Yunhai Cai Y. Jiao, Y. Nosochkov, M-H.
LHeC Final Focus System Jose L. Abelleira, PhD candidate CERN, EPFL Thanks to: H. Garcia, R. Tomas, F. Zimmermann 2012 CERN-ECFA-NuPECC Workshop on the.
Issues related to crossing angles Frank Zimmermann.
News from the interaction region study Bernhard Holzer, Anton Bogomyagkov, Bastian Harer, Rogelio Tomas Garcia, Roman Martin, Luis Eduardo Medina Presented.
First evaluation of Dynamic Aperture at injection for FCC-hh
1 April 1 st, 2003 O. Napoly, ECFA-DESY Amsterdam Design of a new Final Focus System with l* = 4,5 m J. Payet, O. Napoly CEA/Saclay.
Operating IP8 at high luminosity in the HL-LHC era
MDI and head-on collision option for electron-positron Higgs factories
Review of new High Energy Rings
D0 and its integrability
LHeC interaction region
fundamental equations of LHC performance
Field quality update and recent tracking results
Crab Waist Collision Studies for e+e- Factories
Large Booster and Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Multiturn extraction for PS2
Alternative design of the matching section for crab-cavity operation
DA Study for the CEPC Partial Double Ring Scheme
Interaction region design for the partial double ring scheme
DA Optimization/ Beam-Beam Tail Wyw170816/0823-bx0.36
SuperB CDR Machine P. Raimondi for the SuperB Team Paris, May 9, 2007.
Beam-beam simulations with crossing anlge + crab-waist
Pushing the LHC nominal luminosity with flat beams
Thursday Summary of Working Group I
Negative Momentum Compaction lattice options for PS2
IR Lattice with Detector Solenoid
Beam-Beam Effects in High-Energy Colliders:
SuperB IRC Meeting Frascati, Nov. 13th 2007
M. E. Biagini, LNF-INFN SuperB IRC Meeting Frascati, Nov , 2007
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
JLEIC Collider Rings’ Geometry Options (II)
Integration of Detector Solenoid into the JLEIC ion collider ring
Upgrade on Compensation of Detector Solenoid effects
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Large emittance scenario for the Phase II Upgrade of the LHC
100th FCC-ee Optics Design Meeting
Presentation transcript:

Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann, CERN Beams dep. Thanks to: S. Fartoukh, S.Russenschuck (CERN), D.Shatilov (BINP SB RAS,Novosibirsk), R. Tomas (CERN), C. Milardi, M. Zobov (INFN/LNF, Frascati (Roma)) Warsaw, 25 th April 2012

Contents Flat beam optics. Comparison. Double half-quadrupole Large Piwinski angle & crab-waist collisions Luminosity Future work, open questions Conclusions 2 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Flat beam optics Peak luminosity To increase luminosity: -Reduce both σ x * and σ y * -Substantially reduce σ y * ΔμxΔμx ΔμyΔμy sext1 sext2 sext3 π/2 3π/2 π/2 π 5π/2 Local chromatic correction in Y. First time ever for LHC! sext1 sext2 sext3 Chromatic correction β x * =1.5 m β y * =1.5 cm β x * β y * =15cmx15cm (nominal ATS optics with crab cavities) Crab –waist collisions 3 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

45 mm Large crossing angle-> large Piwinski angle 15σ y 15σ x σ x/ σ y =10 Minimum required according to beam-beam simulations. 2 mrad Reference orbit 4 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Actual LHC optics IP The 2 beams see opposite gradients + 5 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Flat beam LHC optics IP The 2 beams see the same gradients - + How to produce opposite gradient in the same pipe? 6 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Double half-quad B 0 =-5.8 T g=115 T/m NbTi S.Russenschuck 7 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Kick due to the dipolar term 8 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Matching Arc (MQ11) β x =127 m β y =21 m D x =1.5 m β x =20 m β y =207 m D x =0.6 m DSMSFF Separation bending magnets 9 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Large Piwinski angle Luminosity reduction through F but… 1-Decrease overlapping area. Lower β y decrease Head-on or small φLarge Piwinski angle Hourglass effect limits β y decrease ! 2-More particles N for the same beam-beam tune shift 3-It opens the possibility for crab-waist collisions Collision section (CS) 10 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Crab-waist collisions Normal collision scheme Crab-waist collision scheme With Large Piwinski Angle Collision Point ≠ Interaction Point P.Raimondi, D.Shatilov, M. Zobov 11 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Crab-waist collisions Conditions Sextupole strength In particular 12 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC. P.Raimondi, D.Shatilov, M. Zobov

Crab-waist simulations Resonance suppression CW = 0 CW = 0.5 Dmitry Shatilov Mikhail Zobov 13 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Luminosity gain Nx10 11 \ε n (μm) Luminosity (10 34 cm -1 s -1 ) Nx10 11 \ε n (μm) Main limitation: the crossing angle due to the separation of the double half quad Further improvements in the double half-quad. design can reduce the crossing angle (Nb 3 Sn) θ/2= 2 mrad θ/2=1 mrad 14 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Flat emittance Limitation: aperture of the half quad Solution: reduce ε y keeping constant ε x ε y ε β hq ε σ hq βy*βy* εxεx εyεy β hq Squeeze of the emittance ellipse β y increase in the half-quad.->reduction on σ y * = sqrt(ε y β y * ) β x decrease in the half-quad.->reduction of horizontal chromatic aberrations -> increase on σ x * = sqrt(ε x β x * ) ->Geometric reduction factor increased F=(1+ (ϴ/2)σ z /σ x ) -1/2 Luminosity increase through significant σ y * reduction and F increase 15 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Flat emittance Luminosity Keep ε x ε y constant and vary ε x/ ε y Θ=4 mrad N=2x Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Work in the next months – Study of the aberrations – Rematch the dispersion – Improvement of the half-quad – Dynamic aperture – Beam-beam simulations 17 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Open questions – Field quality of the double half-quad & correction scheme – Dispersion matching for the chromatic correction – 2 nd order dispersion cancellation 18 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Conclusions An extremely-flat beam optics (β y * /β y * =100) is conceptual possible for LHC – Large Piwinski angle, to reduce the collision area and allow for a lower β y decrease – Local vertical chromatic correction – Possibility to have crab waist collisions that can increase luminosity and suppress resonances – Can accept higher brightness. The performance of the new optics can be improved – Future half-quad designs (Nb 3 Sn) – Using a flat emittance – HE-LHC? Already flat emittance due to SR 19 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

Thank you… …For your attention 20 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.