1 Crab Waist Studies for SuperB and KEKB Y. Ohnishi/KEK SuperB Workshop V Paris 10/May/2007.

Slides:



Advertisements
Similar presentations
Crab crossing and crab waist at super KEKB K. Ohmi (KEK) Super B workshop at SLAC 15-17, June 2006 Thanks, M. Biagini, Y. Funakoshi, Y. Ohnishi, K.Oide,
Advertisements

Beam-Beam Effects for FCC-ee at Different Energies: at Different Energies: Crab Waist vs. Head-on Dmitry Shatilov BINP, Novosibirsk FCC-ee/TLEP physics.
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
KEKB Design 1.Parameters 2.Collider Ring 3.Interact Region 4. Magnet, RF, Instabilities 5.Recent progress with crab crossing.
Lattice Status SuperB Project Workshop SLAC, October 6-9, 2009 Yuri Nosochkov for the SuperB Lattice Team Major recent updates by P. Raimondi and S. Sinyatkin.
SuperKEKB Lattice and Dynamic Aperture H. Koiso Apr. 20, 2005 Super B Factory Workshop in Hawaii.
Nano-Beam Scheme for SuperKEKB Andrew Hutton Slides taken from talks by Haruyo Koiso, Yukiyoshi Ohnishi & Masafumi Tawada.
SuperKEKB IR Design Y. Funakoshi (KEK).
Super B-Factory Workshop, Hawaii, April 20-22, 2005 Lattice studies for low momentum compaction in LER M.E. Biagini LNF-INFN, Frascati.
1 Super-B Factory Scenarios John Seeman Assistant Director PPA Directorate SLAC SLUO Meeting September 11, 2006.
Wilson Lab Tour Guide Orientation 11 December 2006 CLASSE 1 Focusing and Bending Wilson Lab Tour Guide Orientation M. Forster Mike Forster 11 December.
Beam-beam studies for Super KEKB K. Ohmi & M Tawada (KEK) Super B factories workshop in Hawaii Apr
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
Beam-Beam Optimization for Fcc-ee at High Energies (120, 175 GeV) at High Energies (120, 175 GeV) Dmitry Shatilov BINP, Novosibirsk 11 December 2014, CERN.
IR Optics and Nonlinear Beam Dynamics Fanglei Lin for MEIC study group at JLab 2 nd Mini-workshop on MEIC IR Design, November 2, 2012.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
January 13, 2004D. Rubin - Cornell1 CESR-c BESIII/CLEO-c Workshop, IHEP January 13, 2004 D.Rubin for the CESR operations group.
On the Possibility of Using Landau Damping Octupoles in the Recycler Y. Alexahin, A. Burov, E. Gianfelice-Wendt, V. Lebedev, A. Valishev Abstract: To provide.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Matching recipe and tracking for the final focus T. Asaka †, J. Resta López ‡ and F. Zimmermann † CERN, Geneve / SPring-8, Japan ‡ CERN, Geneve / University.
1 IR with elliptical compensated solenoids in FCC-ee S. Sinyatkin Budker Institute of Nuclear Physics 13 July 2015, CERN.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
ELIC Low Beta Optics with Chromatic Corrections Hisham Kamal Sayed 1,2 Alex Bogacz 1 1 Jefferson Lab 2 Old Dominion University.
Flat-beam IR optics José L. Abelleira, PhD candidate EPFL, CERN BE-ABP Supervised by F. Zimmermann, CERN Beams dep. Thanks to: O.Domínguez. S Russenchuck,
Luminosity of the Super-Tau-Charm Factory with Crab Waist D. Shatilov BINP, Novosibirsk TAU’08 Workshop, Satellite Meeting “On the Need for a Super-Tau-Charm.
SuperB Lattice Studies M. Biagini LNF-INFN ILCDR07 Workshop, LNF-Frascati Mar. 5-7, 2007.
Study and Optimization of Dynamic Aperture for the SuperKEKB LER E.Levichev and P.Piminov, BINP SB RAS, Novosibirsk, Russia.
Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
1 NICA Collider: status and further steps O.S. Kozlov LHEP, JINR, Dubna for the NICA team Machine Advisory Committee, JINR, Dubna, October 19-20, 2015.
KEKB lattice Taken from LATTICE DESIGN FOR KEKB COLLIDING RINGS By H. Koiso and K. Oide.
Plan for Review of FCC- ee Optics and Beam Dynamics Frank Zimmermann FCC-ee Design Meeting 31 August 2015.
E Levichev -- Dynamic Aperture of the SRFF Storage Ring Frontiers of Short Bunches in Storage Rings INFN-LNF, Frascati, 7-8 Nov 2005 DYNAMIC APERTURE OF.
1 Dynamic aperture studies in e+e- factories with crab waist IR’07, November 9, 2007 E.Levichev Budker Institute of Nuclear Physics, Novosibirsk.
SLAC Accelerator Development Program: SuperB Mike Sullivan OHEP Accelerator Development Review January 24-26, 2011.
February 5, 2005D. Rubin - Cornell1 CESR-c Status -Operations/Luminosity -Machine studies -Simulation and modeling -4.1GeV.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
Introduction of Accelerators for Circular Colliders 高亮度 TAU-CHARM 工厂 & 先进光源, 2014/09.
Numerical Simulations for IOTA Dmitry Shatilov BINP & FNAL IOTA Meeting, FNAL, 23 February 2012.
Choice of L* for FCCee: IR optics and DA A.Bogomyagkov, E.Levichev, P.Piminov Budker Institute of Nuclear Physics Novosibirsk HF2014, IHEP Beijing, 9-12.
Muon Collider Physics Workshop FNAL November 10-12, 2009 Muon Collider Lattice Design FERMI NATIONAL ACCELERATOR LABORATORY US DEPARTMENT OF ENERGY f Y.
Collision with a crossing angle Large Piwinski angle
Nonlinear properties of the FCC/TLEP final focus with respect to L*
MDI and head-on collision option for electron-positron Higgs factories
Dynamic Aperture Studies with Acceleraticum
Review of new High Energy Rings
First Look at Nonlinear Dynamics in the Electron Collider Ring
Status of SuperKEKB Design: Lattice and IR
XII SuperB Project Workshop LAPP, Annecy, France, March 16-19, 2010
Interaction Region Design Options e+e- Factories Workshop
SuperB CDR Machine P. Raimondi for the SuperB Team Paris, May 9, 2007.
Beam-Beam Effects in the CEPC
Electron Rings Eduard Pozdeyev.
IR Lattice with Detector Solenoid
Beam-Beam Effects in High-Energy Colliders:
LNF site 1.2 Km LER lattice: preliminary dynamic acceptance studies
M. E. Biagini, LNF-INFN SuperB IRC Meeting Frascati, Nov , 2007
Sawtooth effect in CEPC PDR/APDR
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Progress on Non-linear Beam Dynamic Study
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Update on MEIC Nonlinear Dynamics Work
Integration of Detector Solenoid into the JLEIC ion collider ring
Upgrade on Compensation of Detector Solenoid effects
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Presentation transcript:

1 Crab Waist Studies for SuperB and KEKB Y. Ohnishi/KEK SuperB Workshop V Paris 10/May/2007

2 Crab Crossing and Crab Waist Head-on collision is effectively realized by crab cavity, while crab waist controls nonlinear interaction induced by crossing angle. For high current scheme, either scheme will work, but not both at once. For low emittance scheme, only crab waist is applicable because beam-beam tune shift becomes too high. Crab waist can make luminosity comparable to that of crab crossing.

3 Crab Waist Scheme Hamiltonian can be considered at IP as follows: Then, the vertical position changes as: Transformation of phase space can be written by: If drift space is also considered, total transformation: This Hamiltonian can be made by sextupoles.

4 Crab Waist Scheme (cont'd) Twiss parameters at IP can be transformed by M: The waist moves along the x position: When an appropriate K is chosen as follows, particle collides with other beam at the waist point. The strength of sextupoles are determined by above formula. s x 2x2x

5 Crab Waist Scheme (cont'd) In order to make H=xp y 2 at IP using sextupoles, an appropriate betatron phase advance is needed. The Hamiltonian of sextupoles is: X and Y are reference coordinate (x and y are physical coordinate) : Transformation of sextupoles(SX1 → IP and SX2 ← IP): m, n, k, l are integer and arbitrary. This term makes crab waist.

6 Crab Waist Scheme (cont'd) When  x = ,  y =  /2 is chosen, effect of the crab waist becomes: In order to make crab waist, strength of sextupoles is: On the other hand, x 3 term becomes: 2  x =34 mrad,  x *=20 mm,  y *=0.3 mm,  x,sext =14 m,  y,sext =140 m → K=26.5 m -2 F 3,x 3 = ~80000 F 3,crab = 29 Very large effect !

7 Crab Waist Studies for SuperB

8 SuperB-HER new lattice by Pantaleo

9 Lattice Parameter betatron tunes

10 Final Focus - Old(left) & New(right) OCTX0(K 3 =-8) DECY0(K 3 =1)OCTX4(K 3 =-23)DECY4(K 3 =-6) -I' SFX5 K 2 =0 -I' crab waist sextupole

11 Final Focus with Crab Waist  x = 6.0   y = 5.5   x crab /  y crab =14 m/140 m Sextupole(thin) for crab waist  x */  y * = 20 mm/200  m

12 Interaction Region 30 cm OCT0 magnet (multipole) IP close-up of IR

13 Chromaticity Correction

14 SuperB-HER Chromatic Functions DDX WX WY WX,WY DDX s (m) IP

15 Chromatic Functions (cont'd) DDX WX WY WX,WY DDX s (m) IP

16 Dynamic Aperture for SuperB-HER  p/p 0 n x =x/  x J y /J x =0.25% (fixed) Synchrotron oscillation: ON Radiation damping: OFF Quantum excitation: OFF #turns: 1000 x / y =48.57/23.60  x */  y *=20 mm/200  m  x crab /  y crab =14 m/140 m (thin-lens sextupole) 7 GeV Crab waist K 2 =0 Crab waist K 2 =+20/-20 Fringe effect for all magnets Dashed line: OFF Solid line: ON Crab waist:K 2 =0, Fringe effect:OFF, Synch. oscillation:OFF Fringe field reduces dynamic aperture.

17 Effects of Fringe Field(Maxwellian Fringe) All magnets fringe on FF region fringe on QD0 only fringe on All magnets fringe off  p/p 0 (2J x /  x ) 1/2 J y /J x =0.25% Blue: Crab waist off/Red: Crab waist on Fringe of QD0 strongly affects dynamic aperture.

18 Local Compensation of Final Focus Fringe OCT0 K 3 Score(are of dynamic aperture) K 3 =16 K 3 =8 K 3 =24 K 3 =4 K 3 =0 K 3 =-4 K 3 =12  p/p 0 (2J x /  x ) 1/2 J y /J x =0.25% OCT0 is turned on All magnets include nonlinear fringe effects Octupole near QD0 increases dynamic aperture(on-momentum) by 30%. Crab waist ON

19 Summary of Studies at SuperB SAD is consistent with MAD for the case of no fringe field. If the fringe field is ignored, the 50  x (70  x for K 2 =0) can be achieved in the dynamic aperture for on- momentum. However, fringe field is turned on, the dynamic aperture decreases to 18  x. Final focus doublet(QD0) affects the dynamic aperture significantly. Octupoles near QD0 increase the dynamic aperture(on- momentum) by 30%. Cure of x 3 term should be considered ?

20 Crab Waist Studies for KEKB

21 Crab Waist Optics at KEKB Beam-beam simulation by K. Ohmi has shown that the crab waist scheme will boost the luminosity of the present KEKB, as well as the crab cavity. Several lattice design was tried on the computer. As the result, drastic degradation of the dynamic aperture was found. No good solution has been obtained so far. sextupole waist

22 LER Crab Waist Oho-Nikko Version  X 12.5*2   y 11.25*2   X 12.5*2   y 11.75*2  K2 9.3 K NX 25 NY 23 I - transformation Nikko Oho Tsukuba LER H. Koiso

23 Crab Waist Oho-Nikko Version The dynamic aperture is estimated by tracking in the 6D phase space turns (1/4 of the longitudinal damping time) Crab waist sextupoles significantly decrease the dynamic aperture. x/  x  p/p 0

24 Crab Waist Tsukuba Version 1  X 1.5*2   y 1.75*2   X 2.0*2   y 1.75*2  SX K SX K Crab waist sextupoles (SCWTR/L) are located in IR. -I’ transformation between the sextupoles  X /  Y =21/150 m at SCWTR/L Those sextupoles decrease the dynamic aperture that is the same as Oho-Nikko version. K2 ±9.3 K2=0 SL0 を off RF ON Two additional quadrupoles to match the condition for the crab waist.

25 Crab Waist Tsukuba Version 2  X 1.5*2   y 1.75*2   X 2.0*2   y 1.75*2  SX K2 6.6 SX K2 6.6 Sextupoles both in IR and in other straight sections to cancel x 3 term at IP.  x/  SCWTR/L  x/  SCWN/O Removed solenoid and multipole components of the final quadrupoles (QCS, QC2) Thin sextupoles  X 11.5*2   y 10.5*2   X 11*2   y 10*2  SCWTR/L: K2=+6.6 SCWN: K2=-.449 SCWO: K2=+.449

26 Crab Waist Tsukuba Version 2 Sextupoles(SCWTR/L) for the crab waist are located in the Tsukuba straight section(IR). The sextupoles in the Oho and Nikko section cancel out the x 3 term.  x /  y SCWTR/L  x /  y SCWN/O SCWTR/L: K 2 =+6.6 SCWN : K 2 =-.449 SCWO : K 2 =+.449 To make cancellation of x 3 term (K. Oide) /60×15 x3x3 xp y 2

27 Crab Waist Tsukuba Version 2 Optics: 27JAN07C No solenoid, skew quads SCWTR/L:  x /  y = 10/300 m |K 2 |=6.6 SCWN/O :  x /  y = 60/15 m |K 2 |=0.449 J y =0 J y /J x =10 % K 2 =0 J y /J x =10 % RF ON

28 Crab Waist Tsukuba Version 2 ・ Optics: 27JAN07C ・ RF OFF ・ J y /J x =10 % ・ SCWTR/L K 2 =0, 0.66, 1.1, 2.2, 3.3, 6.6 ・ SCWN/O K 2 =0 Thin SCWN/O NZ=0 NZ=+2 x/  x

29 Crab Waist Simple IP Version K2 6.6 Quadruples only for the region between SCWTR and SCWTL SCWTR/L: thin lens.

30 Crab Waist Simple IP Version Jy/Jx=10 % RF OFF SCWTR/L K 2 = 6.6, 0 Quadrupoles between two sextupoles for the crab waist are thin lens. Elements between two sextupoles are investigated. kinematical terms of drift spaces are removed. Nonlinear fringe fields of quadrupoles between crab waist sextuples are removed. OFF crab waist sextupoles ON x/  x

31 HER Model Optics for Crab Waist Sextupoles are installed in the Nikko and Oho section. *2  yy xx yy xx A. Morita

32 Dynamic Aperture of HER Octupoles(more than 30) are located at RF sections. These octupoles can not recover the dynamic aperture. J y /J x = 10 %

33 Summary of Studies at KEKB Several kinds of the optics for the crab waist at KEKB are studied: Sextupoles in Oho and Nikko for the crab waist. Sextupoles in Tsukuba for the crab waist. Sextupoles for the crab waist in Tsukuba and sextupoles to cancel the x 3 term in Oho and Nikko section. Solenoid, QCS offset, QCS & QC2 mutlipole elements are removed from the realistic optics. Replace the realistic IR with the simple low-beta IR. Optimization of octupoles for the crab waist optics in HER Maxwellian fringe of quadrupoles, kinematics terms of drift space etc. reduce the dynamic aperture. There is no good solution found so far.