PHY 231 1 PHYSICS 231 Lecture 14: revision Remco Zegers Walk-in hour: Monday 9:15-10:15 am Helproom BPS 1248 missing ID’s 129020 151313 130786 128820 152180.

Slides:



Advertisements
Similar presentations
Topics: Forces, Apparent Weight, & Friction
Advertisements

Work Done by a Constant Force
Chapter 6: Conservation of Energy
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Work and Energy Chapter 5 Table of Contents Section 1 Work Section.
Work, Energy, And Power m Honors Physics Lecture Notes.
Work, Energy, and Power Samar Hathout KDTH 101. Work is the transfer of energy through motion. In order for work to take place, a force must be exerted.
Conservation of Energy Energy is Conserved!. The total energy (in all forms) in a “closed” system remains constant The total energy (in all forms) in.
PHY PHYSICS 231 Lecture 8: Forces, forces & examples Remco Zegers Walk-in hour: Monday 11:30-13:30 Helproom.
PHY PHYSICS 231 Lecture 14: revision Remco Zegers Walk-in hour: Monday 9:15-10:15 am Helproom BPS 1248.
PHY PHYSICS 231 Lecture 10: Too much work! Remco Zegers Walk-in hour: Thursday 11:30-13:30 Helproom.
PHY PHYSICS 231 Lecture 10: Too much work! Remco Zegers Walk-in hour: Thursday 11:30-13:30 Helproom.
PHY PHYSICS 231 Lecture 11+12:work, energy and power Remco Zegers.
PHY PHYSICS 231 Lecture 10: Too much work! Remco Zegers.
PHY PHYSICS 231 Lecture 11+12:work, energy and power Remco Zegers.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Sections 818, 819, 820, 821 Lecture 10.
PHYSICS 231 Lecture 11+12: How much energy goes into problems?
PHY PHYSICS 231 Lecture 11+12: How much energy goes into problems? Remco Zegers.
General Physics 1, Additional questions By/ T.A. Eleyan
1a. Positive and negative work
Chapter 5 Work and Energy
It takes work to lift a mass against the pull (force) of gravity The force of gravity is m·g, where m is the mass, and g is the gravitational acceleration.
Physics 6A Work and Energy examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
WORK In order for work to be done, three things are necessary:
Introduction to Work Monday, September 14, 2015 Work Work tells us how much a force or combination of forces changes the energy of a system. Work is.
Chapter 5 – Work and Energy If an object is moved by a force and the force and displacement are in the same direction, then work equals the product of.
PHY PHYSICS 231 Lecture 18: equilibrium & revision Remco Zegers Walk-in hour: Thursday 11:30-13:30 am Helproom.
Chapter 6 Conservation of Energy. MFMcGrawCh06 - Energy - Revised: 2/20/102 Conservation of Energy Work by a Constant Force Kinetic Energy Potential Energy.
Work, Power, Energy Work.
WORK AND ENERGY 1. Work Work as you know it means to do something that takes physical or mental effort But in physics is has a very different meaning.
by the normal force acting on a sliding block?
Chapter 6 Work and Energy.
Chapter 5 Work and Energy. Review  x = v i  t + ½ a  t 2  x = ½ (v i + v f )  t v f = v i + a  t v f 2 = v i 2 + 2a  x.
Potential Energy and Conservative Forces
Preview Objectives Definition of Work Chapter 5 Section 1 Work.
Energy m m Physics 2053 Lecture Notes Energy.
Physics 3.3. Work WWWWork is defined as Force in the direction of motion x the distance moved. WWWWork is also defined as the change in total.
Review and then some…. Work & Energy Conservative, Non-conservative, and non-constant Forces.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Newton’s Laws of Motion Newton’s First Law If there is no unbalanced force an object will move at constant velocity or remain at rest. Newton’s Second.
1.3 – Newton’s Second Law, Energy and Power
Chapter 8 Potential Energy. Potential energy is the energy associated with the configuration of a system of objects that exert forces on each other This.
Physics 6A Work and Energy examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
PHY PHYSICS 231 Lecture 8: Forces, forces & examples Remco Zegers Walk-in hour: Monday 9:15-10:15 helproom.
Lecture 11: Potential Energy & Energy Conservation.
Motion, Forces and Energy Lecture 7: Potential Energy & Conservation The name potential energy implies that the object in question has the capability of.
Work has a specific definition in physics
Work and Energy x Work and Energy 06.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
Final Exam Review (Day 1).  Energy Lecture Review  Kinetic & Potential Energy  Net Work (W net = F net  x = F net cos  )  Work-Kinetic Energy Theorem.
PHY PHYSICS 231 Lecture 18: equilibrium & revision Remco Zegers Walk-in hour: Thursday 11:30-13:30 am Helproom.
WORK & ENERGY Physics, Chapter 5. Energy & Work What is a definition of energy? Because of the association of energy with work, we begin with a discussion.
Wednesday June 15, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #9 Wednesday June 15, 2005 Dr. Andrew Brandt Lightning.
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Power, Energy. Work Concepts Work (W) ~ product of the force exerted on an object and the distance the object moves in the direction of the force.
 Work  Energy  Kinetic Energy  Potential Energy  Mechanical Energy  Conservation of Mechanical Energy.
Chapter 5 Work and Energy. Mechanical Energy  Mechanical Energy is the energy that an object has due to its motion or its position.  Two kinds of mechanical.
CHAPTER 5 Work and Energy Work: Work:Work done by an agent exerting a constant force is defined as the product of the component of the force in the direction.
PHY 101: Lecture Work Done by a Constant Force
Energy and its Conservation Physics Mrs. Coyle. Part I Mechanical Energy – Potential – Kinetic Work Energy Theorem.
Work and Energy Energy KINETIC ENERGY (KE): energy associated with motion of an object POTENTIAL ENERGY (PE): energy associated with position of an object.
Chapter 6 Work and Energy © 2014 Pearson Education, Inc. No need to write information in red.
 Gravity is 9.8 or ~10 m/s 2  If dropped from rest: y = -½ gt 2.
Chapter 6 Work and Energy.
1a. Positive and negative work
Physics Support Materials Higher Mechanics and Properties of Matter
Work Done by a Constant Force
Work Done by a Constant Force
Chapter 5 Work and Energy
Unit 7: Work, Power, and Mechanical Energy.
Presentation transcript:

PHY PHYSICS 231 Lecture 14: revision Remco Zegers Walk-in hour: Monday 9:15-10:15 am Helproom BPS 1248 missing ID’s

PHY Chapter 4: Newton’s Laws  First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was moving with a certain velocity, it will keep on moving with the same velocity.  Second Law: The acceleration of an object is proportional to the net force acting on it, and inversely proportional to its mass: F=ma  If two objects interact, the force exerted by the first object on the second is equal but opposite in direction to the force exerted by the second object on the first: F 12 =-F 21

PHY Important equations Newton’s second law:  F=ma Gravitational Force: F=mg F=Gm 1 m 2 /r 2 Earth: m 1 =m earth r=r earth g=Gm 2 /r 2 =9.8 m/s 2 Equilibrium:  F x =0  F y =0 (object not moving)  F L =0  F // =0 normal force: force perpendicular to surface the object is resting on, and balancing the component of the gravitational force perpendicular to the surface friction: F=  s n (  s : coef. of static friction) F=  k n (  k : coef. of kinetic friction)  s >  k Hooke’s law: F s =-kx (k: spring constant)

PHY example 1 To lift a patient, 4 nurses grip the sheet on which the patient is lying and lift upward. If each nurse exerts an upward force of 240 N and the patient has an upward acceleration of m/s 2 what is the weight of the patient?  F=ma (only in vertical direction) 4F nurse -F g,patient =m patient a patient 960-m patient g=0.504m patient m patient =960/( )=93.1 kg w patient =93.1*9.81=913 N

PHY example 2 A 5.0 kg bucket of water is raised from a well by a rope. If the upward acceleration of the bucket is 3.0 m/s 2, find the force exerted by the rope on the bucket. T FgFg  F=ma (vertical direction only) T-mg=ma T=m(g+a)=5( )=64 N

PHY example 3 A 1000-kg car is pulling a 300 kg trailer. Their acceleration is 2.15 m/s 2. Ignoring friction, find: a)the net force on the car b)the net force on the trailer c)the net force exerted by the trailer on the car d)the resultant force exerted by the car on the road F engine F tc =-F ct F engine =m total a=1300*2.15=2795 N F ct =m trailer *2.15=645 N, so F tc =-645 N a)  F car = =2150 F car =m car *2.15=2150 b)  F trailer =F tc =645 N c)F tc =-645 N 2150 mg=1000*9.8 d)F total =  ( (-9800) 2 = 1E+04 N

PHY example kg A q=20 o Is there a value for the static friction of surface A for which these masses do not slide? If so, what is it? 2 kg mass:  F=ma (only vertical) T-mg=ma T-0.5g=2a 1 kg mass:  F=ma (parallel to the slope) -F g// -T+F friction =ma -mgsin(q)-T+  s mgcos(q)=ma T+9.2  s =a No sliding: a=0, so T=0.5g=4.9 (from 0.5kg mass equation)  s =0  s =0.9 1 kg nF friction FgFg T T FgFg

PHY example 5 F A force F (10N) is exerted on the red block (1 kg). The coef. of kinetic friction between the red block and the blue one is 0.2. If the blue block (10kg)rests on a frictionless surface, what will be its acceleration? F friction =  k n=  k mg=0.2*9.8=1.96 N (to the left) F red-blue =-F blue-red so force on blue block=1.96 N (to the right) F=ma so 1.96=10a a=0.196 m/s 2

PHY example 6 A rocket is fired from a launching pad. The velocity AND acceleration of the rocket increase with time even though the thrust of the engine is constant. Why? a)The gravitational force becomes smaller because the mass of the rocket becomes smaller (losing fuel) b) The gravitational constant g becomes smaller if the rocket travels away from the earth c) While traveling away from earth, the gravitational pull from other planets/sun becomes stronger supporting the further acceleration d) Because the density of air becomes small, the friction becomes less

PHY Revision: chapter 5  Work: W=Fcos(  )  x Energy transfer  Power: P=W/  tRate of energy transfer  Potential energy (PE) Energy associated with position.  Gravitational PE: mgh Energy associated with position in grav. field.  PE stored in a spring: 1/2kx 2 x is the compression of the spring k is the spring constant  Kinetic energy KE: 1/2mv 2 Energy associated with motion  Conservative force: Work done does not depend on path  Non-conservative force: Work done does depend on path  Mechanical energy ME: ME=KE+PE  Conserved if only conservative forces are present KE i +PE i =KE f +PE f  Not conserved in the presence of non-conservative forces (KE i +PE i )-(KE f +PE f )=W nc

PHY example 7 k=100 N/m m=1 kg 1 cm A pendulum is pushed with initial velocity 0.1 m/s from a height of 1 cm. How far does it compress the spring? (assume m does not rise significantly after hitting the spring) Conservation of ME: (mgh+1/2mv 2 +1/2kx 2 ) initial = (mgh+1/2mv 2 +1/2kx 2 ) final 1*9.8* *1* = *100*x 2 so x=0.045 m

PHY example 8 A ‘smart’ student decides to save energy by connecting his exercise treadmill to his laptop battery. If it takes 70 J to move the belt on the treadmill by 1 meter and 50% of the generated energy is stored in the battery, how ‘far’ must the student run to use his 100 W laptop for free for 2 hours? Work done by student: W=70*d J Energy given to the battery 0.5W=35*d J 100 W laptop for 2 hours: 100 J/s*3600*2 s=7.2E+5 J 720 KJ 7.2E+5=35*d so d=(7.2E+5)/35=2.1E+4 m =21km!!!

PHY example A block of 1 kg is pushed up a 45 o slope with an initial velocity of 10 m/s. How high does the block go if: a) there is no friction b) if the coefficient of kinetic friction is 0.5. A) Conservation of ME: (mgh+1/2mv 2 ) initial = (mgh+1/2mv 2 ) final *1*10 2 =1*9.8*h+0. So h=5.1 m B) Energy is lost to friction: (mgh+1/2mv 2 ) initial = (mgh+1/2mv 2 ) final +W friction [W=F  x=  n  x=  mgcos(45 o )h/sin(45 o )=0.5*1*9.8*h=4.9h] *1*10 2 =1*9.8*h h so h=3.4 m h

PHY example 10 A crate of 50kg is starting to slide from a slope. When it reaches the bottom, it is caught by a spring with a spring constant of 1000 N/m. a) If the crate was originally at a height of 10 m and friction can be ignored, how much is the spring maximally compressed? b) if the frictional force is 100N and the length of the slope is 15m, what is the maximal compression? a)use conservation of mechanical E. at top: E tot =1/2mv 2 +mgh=mgh=50*9.8*10=4900 J when spring is maximally compressed: E tot = 1/2mv 2 +mgh+1/2kx 2 =1/2*1000*x 2 =500x =500x 2 x=3.1 m b) W non-conservative =F friction *  x=100*15=1500N The mechanical energy just before the block hits the spring: =3400J 500x 2 =3500 x=2.6 m

PHY example 11 A car (A) can accelerate from 0 to 10 m/s in 5 s. Another car (B) of the same mass as A can reach 8 m/s in 5 s seconds. What is the ratio of the power of car A to car B ( P A /P B )? A)10/8 B)8/10 C)1 D)10/5 E)8/5 F)100/64 P=W/  t since  t is the same for A and B, P~W. W=KE f -KE i =0.5m(v f 2 -v i 2 ) W A =0.5m10 2 W B =0.5m8 2 P A /P B =W A /W B =10 2 /8 2 =100/64

PHY example 12 A 70-kg diver steps of a 10-m tower and drops, from rest straight down into the water. If he comes to rest 5.0 m below the water surface, determine the average resistive force exerted by the water. C A B (KE i +PE i )-(KE f +PE f )=W nc Choose the final rest point under water as the zero level. KE A =0 PE A =mgh=70*9.8*15=10290 J KE C =0 PE C =mgh=70*9.8*0=0 J W friction =10290 N=(Fcos  )  x=5F F=2058 N Maximum speed (just before hitting the water): KE A +PE A =KE B +PE B =0.5*70*v 2 +70*9.8*5 v=14 m/s