The Magnetar Primer Shriharsh P. Tendulkar California Institute of Technology S. R. Kulkarni P. B. Cameron.

Slides:



Advertisements
Similar presentations
Proton Cyclotron Lines in Thermal Magnetar Spectra S. Zane, R. Turolla, L. Stella and A. Treves Mullard Space Science Laboratory UCL, University of Padova,
Advertisements

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink Isolated NSs, London, April, 2006 Magnetars in Supernova Remnants & Magnetar Formation.
SOFT GAMMA REPEATERS Kevin Hurley UC Berkeley Space Sciences Laboratory THE SGR-SHORT BURST CONNECTION Kevin Hurley UC Berkeley Space Sciences Laboratory.
Ryo Yamazaki (Osaka University, Japan) With K. Ioka, F. Takahara, and N. Shibazaki.
A giant flare from the magnetar SGR a tsunami of gamma-rays Søren Brandt Danish National Space Center.
13 th July 2005Poonam Chandra The most violent bomb-blast in our Galaxy in 100 years SGR Poonam Chandra TIFR, Mumbai.
Neutron Stars and Black Holes
Life and Evolution of a Massive Star M ~ 25 M Sun.
Vicky Kaspi, McGill University, Montreal, Canada.
Relativistic Reconnection Driven Giant Flares of SGRs Cong Yu ( 余聪 ) Yunnan Observatories Collaborators : Lei Huang Zhoujian Cao.
Neutron Stars 2: Phenomenology Andreas Reisenegger Depto. de Astronomía y Astrofísica Pontificia Universidad Católica de Chile Chandra x-ray images of.
Magnetars origin and progenitors with enhanced rotation S.B. Popov, M.E. Prokhorov (Sternberg Astronomical Institute) (astro-ph/ )
Radio-quiet Isolated Neutron Stars (RQINs) Jeng-Lwen, Chiu Institute of Astronomy, NTHU 2004/09/30.
Stephen C.-Y. Ng McGill University Jun 22, 2010HKU Fermi Workshop Neutron Star Zoo: radio pulsars, magnetars, RRATs, CCOs, and more Special thanks to Vicky.
On the nature of the Long-duration radio transients Eran Ofek CALTECH Collaborators: B. Breslauer, A. Gal-Yam, D. Frail, S.R. Kulkarni, P. Chandra, M.
A Slow X-ray Pulsar in the Young, Massive Star Cluster Westerlund 1 M. MunoJ. S. ClarkP. Crowther S. DoughertyR. De GrijsC. Law S. McMillanM. MorrisI.
1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If.
Spatial Structure Evolution of Open Star Clusters W. P. Chen and J. W. Chen Graduate Institute of Astronomy National Central University IAU-APRM
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Origin of magnetars and observability of soft gamma repeaters outside the Local group S.B. Popov (Sternberg Astronomical Institute) Co-authors: M.E. Prokhorov,
Vicky Kalogera with Bart Willems Mike Henninger Formation of Double Neutron Stars: Kicks and Tilts Department of Physics and Astronomy.
The general theory of relativity is our most accurate description of gravitation Published by Einstein in 1915, this is a theory of gravity A massive object.
Magnetars. X-ray Binaries-I.. Diagram from 1994 Magnetars, High B field Pulsars unknown!
New observations of three AXPs at low radio frequencies Daria Teplykh & V.M. Malofeev, A.E. Rodin, S.V. Logvinenko. Pushchino Radio Astronomy Observatory.
Neutron Stars 2: Phenomenology Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile Chandra x-ray.
Deep X-ray Observations of PSR J : Do High-B Pulsars Born with Massive Progenitors? Stephen C.-Y. Ng (HKU) Collaborators: V. M. Kaspi (McGill),
Neutron Stars and Black Holes Chapter 14. Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun ) collapse beyond.
Extensive population synthesis studies of isolated neutron stars with magnetic field decay Sergei Popov (SAI MSU) J.A. Pons, J.A. Miralles, P.A. Boldin,
PULSARS & TRANSIENT SOURCES Pushing the Envelope with SKA Jim Cordes, Cornell 28 Feb 2000  Frontiers of Neutron Star Science  Complete census of transient.
Long-term monitoring of RRAT J HU HuiDong Urumqi Observatory, NAOC July 27, 2009 Rotating Radio Transients Observation.
Star Clusters and their stars Open clusters and globular clusters General characteristics of globular clusters Globular cluster stars in the H-R diagram.
QSO -  QSO -  GRB ANALOGY HAVE THE SAME 3 BASIC INGREEDIENTS (M. & Luis Rodriguez, S&T 2002) AN UNIVERSAL MAGNETO-HYDRODINAMIC MECHANISM FOR JETS ?
Plasma universe Fluctuations in the primordial plasma are observed in the cosmic microwave background ESA Planck satellite to be launched in 2007 Data.
Unifying neutron stars Sergei Popov (SAI MSU) in collaboration with: Andrei Igoshev (SPbSU), and Roberto Turolla (Univ. Padova)
A Neutron Star with a Massive Progenitor in the Star Cluster Westerlund 1 Michael Muno (UCLA/Hubble Fellow) J. S. Clark (Open U)R. de Grijs (U Sheffield)
“GRAND UNIFICATION” in Neutron Stars Victoria Kaspi McGill University Montreal, Canada.
Rotating Radio Transients and their place among pulsars Sarah Burke Spolaor Jet Propulsion Laboratory Sarah Burke Spolaor Jet Propulsion Laboratory IAU.
A New Magnetar Candidate Located Outside the Galactic Plane? Joe Callingham | Sean Farrell | Bryan Gaensler | Geraint Lewis Sydney Institute for Astronomy.
Multi-Epoch Star Formation? The Curious Case of Cluster Stephen Eikenberry University of Florida 11 April 2007.
CEA DSM Dapnia SAp Diego Gotz - Hard X-ray tails in Magnetars 15/05/ Hard X-ray Tails in Magnetars A Case Study for Simbol-X Diego Götz CEA Saclay.
Radio Emissions of Magnetars & Observations at Nanshan Xinjiang Astronomical Observatory Yuan Jianping, Wang Na, Liu Zhiyong Outline  Introduction of.
On Young Neutron Stars as Propellers and Accretors Ma Bo, Department of Astronomy, Nju, Nanjing Citations: Alpar,M.A.,APJ554,1245,2000 Illarionov and Sunyaev.1975.
The Transient Sky Eran Ofek CALTECH Shri Kulkarni Arne Rau Mansi Kasliwal Brian Cameron Avishay Gal-Yam Dale Frail Collaborators:
Neutron Star Demographics
Observations of AXPs and SGRs: 1E and SGR Andrea Tiengo (IASF-MI, Univ. Milano) S. Mereghetti, G. L. Israel, L. Stella, S. Zane, A.
INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space.
Rotating Radio Transients Maura McLaughlin West Virginia University 12 September 2007.
Dec. 11, Review Neutron Stars(NSs) and SNR (Crab Nebula…) and then on to BHs… SN-II produce a NS for massive stars in approx. range 8-15Msun; and.
MAGNETARS Vicky Kaspi Montreal, Canada STScI May 10, 2006.
1 Chang-Hwan Spin of Stellar Mass Black Holes: Hypernova and BH Spin Correlation in Soft X-ray BH Binaries.
Observational Properties Of Pulsars N'Diaye Maxime L3-PS.
The Radio Evolution of the Galactic Center Magnetar Joseph Gelfand (NYUAD / CCPP) Scott Ransom (NRAO), Chryssa Kouveliotou (GWU), Mallory S.E. Roberts.
Cosmological Heavy Ion Collisions: Colliding Neutron Stars and Black Holes Chang-Hwan Lee
Cornelia C. Lang University of Iowa collaborators:
Origin of magnetars and observability of soft gamma repeaters outside the Local group S.B. Popov (Sternberg Astronomical Institute) Co-authors: M.E. Prokhorov,
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
To test AXP/SGR models with eXTP NSs & magnetarshttp:// R. X. Xu Renxin Xu ( 徐仁新 ) School of Physics, Peking University (
Deep Space Objects Variable stars Caused by pulsations in the stars – expansions make them cooler and dimmer – Contractions make them hotter and brighter.
FAST and the neutron star zoo Patrick Weltevrede Jodrell Bank Centre of Astrophysics University of Manchester.
Radio Emitting Magnetars Jason Hessels, Feb. 22, 2007 Anton Pannekoek Institute - Pizza Seminar.
Variability of cosmic Gamma-Ray Burst (II)
Gravitational Waves from Magnetars
Isolated Neutron Stars for ART, eROSITA and LOBSTER
The greatest flare of a Soft Gamma Repeater
Star Clusters and their stars
Magnetars Jared Filseth.
44th Rencontres de Moriond
Galaxies With Active Nuclei
Soft gamma repeaters outside the Local group
Isolated neutron stars
Presentation transcript:

The Magnetar Primer Shriharsh P. Tendulkar California Institute of Technology S. R. Kulkarni P. B. Cameron

The Neutron Star Household Pulsars (1967) Soft Gamma Repeaters (1979) Recycled Pulsars (MSPs etc) (1982) Isolated Neutron Stars ( ) Anomalous X-ray Pulsars (1995) Compact Central Objects (around 2003) RRaTs (2006) 13/02/13S. Tendulkar, RRI 20132

Where does everything fit? 13/02/13S. Tendulkar, RRI 2013 SGRs AXPs INSs RRaTs Standard Issue Pulsars MSPs 3

Where does everything fit? 13/02/13S. Tendulkar, RRI 2013 Magnetic Field Powered Rotation Powered “Accretion” Powered 4

AXPs Anomalous X-ray Pulsars L X ~ erg/s L rot ~10 32 erg/s No companions 13/02/13S. Tendulkar, RRI 2013 AXP 1E inside CTB 109 5

SGRs Soft Gamma Repeaters Short bursts: – ergs/s Giant flares – x ergs – -29 mag! 13/02/13S. Tendulkar, RRI 20136

What is a magnetar? Highly magnetized NS – B ≈ G – Young – Slowly rotating (P ≈ 5-10 s) 13/02/13S. Tendulkar, RRI 20137

What is a magnetar? 13/02/13S. Tendulkar, RRI Scientific American 2003 R. Duncan AXP SGR 8

Reasons for high B Spin down (1979 burst) – 8 sec in 10 4 years Energetics – Variability – No baryons Magnetic Containment 13/02/13S. Tendulkar, RRI 20139

Magnetar vs Pulsar Low B field ‘magnetar’ – SGR – B~7 x G Radio quiet, X-ray bright Unsteady pulses, ratty Pdot High B field pulsars – Few x G Radio bright, X-ray quiet Steady pulses, decline 13/02/13S. Tendulkar, RRI

Open Questions Formation – B-field  Dynamo vs Fossil – Progenitors: Mass, Spin, High B-field? – Age – Kinematics (~1000 km/s?) – SN energies Evolution – Lifetime 13/02/13S. Tendulkar, RRI

Wider Relevance Neutron Star census – Millions might be floating around? – Star formation history etc. Fraction of short-hard GRBs (Ofek et al) – Rate of NS-NS mergers Energetic supernovae (Kasen & Bildsten 2010) 13/02/13S. Tendulkar, RRI

Astrometry 13/02/13S. Tendulkar, RRI

Why Astrometry? Kinematics – Comparison to other NS groups Ages – Model free Progenitors/Birth-places 13/02/13S. Tendulkar, RRI 2013 Challenges: – Can’t work in X-rays – Very few radio/IR counterparts 14

OIR Astrometry Hubble Space Telescope – Large FoV – Stable Distortion – Diffraction Limited Very precise astrometry! – ≈ mas/yr over 7 years (Kallivayalil et al. 2013) 13/02/13S. Tendulkar, RRI

Challenges in AO astrometry Small FoV (10-40”) Anisoplanatism – Changing PSF Variable Performance – Atmosphere dependent 13/02/13S. Tendulkar, RRI

Optimal Astrometry Tip-tilt Anisoplanatism 13/02/13S. Tendulkar, RRI 2013 Sasiela 1994 Cameron et al

Optimal Astrometry Use covariance information Position: p i = W  d i d i = [x 0 -x i, x 1 -x i … y N -y i ] T for each epoch Choose weights W for lst. sq. optimization – Same weights for all epochs 13/02/13S. Tendulkar, RRI

Performance 13/02/13S. Tendulkar, RRI 2013 Palomar 5-m telescope Cameron et al 2009 Measurement NoiseTip-tilt Anisoplanatism 19

SGR Giant flare: 27 th Aug 1998 d ≈ 12 kpc OIR counterpart (Testa et al. 2008) 13/02/13S. Tendulkar, RRI arcsec Cluster of Massive Stars (Vrba et al. 2000) Turnoff mass ≈ 17 M  (Davies et al. 2009) 20

SGR Giant flare: 27 th Dec 2004 d ≈ 15 kpc OIR counterpart (Israel et al. 2005) 13/02/13S. Tendulkar, RRI 2013 Cluster of Massive Stars (Fuchs et al. 1999) Turnoff mass ≈ 50 M  (Bibby et al. 2008) 21

AXP 4U Brightest AXP d ≈ 3 kpc Counterpart (Hulleman et al. 2000) OIR pulsations (Kern & Martin 2002) No association 13/02/13S. Tendulkar, RRI

AXP 1E Center of CTB 109 d ≈ 3 kpc OIR counterpart (Hulleman et al. 2001) 13/02/13S. Tendulkar, RRI arcmin CTB 109

Results 13/02/13S. Tendulkar, RRI

SGR /02/13S. Tendulkar, RRI 2013 Galactic Rotation Expected Progenitor Velocity Measured Magnetar Velocity Galactic Plane 25

SGR /02/13S. Tendulkar, RRI 2013 Age = 6 kyr T C = 0.9 kyr V = 130 km/s 26

SGR /02/13S. Tendulkar, RRI 2013 Towards Galactic Center V = 350 km/s 27

SGR /02/13S. Tendulkar, RRI 2013 Tendulkar et al (2012) Age = 650 ± 300 yr T C = 160 yr 28

SGR /02/13S. Tendulkar, RRI

AXP 1E /02/13S. Tendulkar, RRI 2013 V = 160 km/s Opposite to Galactic Center 30

AXP 1E /02/13S. Tendulkar, RRI 2013 Current Center of CTB 109 Age = 14 kyr (Sasaki et al. 2013) Center of explosion DENSE MOLECULAR CLOUD Tendulkar et al. in prep 31

AXP 4U /02/13S. Tendulkar, RRI 2013 V = 100 km/s 32

AXP 4U /02/13S. Tendulkar, RRI 2013 Hunt for an association Tendulkar et al. in prep 33

Magnetar Kinematics MagnetarV tan (km/s)AssociationMethodReference AXP 1E 1810−197212±35 –VLBIHelfand et al (2007) AXP 1E ±120SNR G VLBIDeller et al (2012) SGR ±30ClusterLGSAOTendulkar et al (2012) SGR ±100ClusterLGSAOTendulkar et al (2012) AXP 1E ±17SNR CTB 109LGSAOTendulkar et al (subm) AXP 4U ±26 –LGSAOTendulkar et al (subm) 13/02/13S. Tendulkar, RRI

Magnetar Kinematics 13/02/13S. Tendulkar, RRI 2013 Tendulkar et al. in prep Matches the velocity distribution of normal pulsars (Hobbs 2005) 35

The NuSTAR Magnetar 13/02/13S. Tendulkar, RRI

Timeline 24 th April ‘13  SWIFT XRT brightening – 0.11 cts/s (1.3 x ergs/s) 13/02/13S. Tendulkar, RRI

Timeline 24 th April ‘13  SWIFT XRT brightening – 0.11 cts/s (1.3 x ergs/s) 26 th April ‘13  SWIFT BAT flare – 32 ms, 2500 cts/s 13/02/13S. Tendulkar, RRI

Timeline 26 th April ‘13  SWIFT BAT flare – 32 ms, 2500 cts/s 26 th April ‘13  NuSTAR ToO 6 hr obs – 3.76 sec period 13/02/13S. Tendulkar, RRI

Timeline 26 th April ‘13  NuSTAR ToO 6 hr obs – 3.76 sec period 29 th April ‘13  Chandra position – 3” away from GC (0.1 pc) 13/02/13S. Tendulkar, RRI

Timeline 29 th April ‘13  Chandra position – 3” away from GC (0.1 pc) 4 th May ‘13  NuSTAR – 7 hrs – Pdot = 6 x s/s – B ~ 1.5 x G 13/02/13S. Tendulkar, RRI

Timeline 4 th May ‘13  NuSTAR – 7 hrs – Pdot = 6 x s/s – B ~ 1.5 x G 6 th May ’13  Paper to ApJL – Kaya Mori et al. 13/02/13S. Tendulkar, RRI

Implications Very similar to other magnetars Probably born in O/WR stars – 6 Myr old  40 M  More evidence for “transient” magnetars – Link to high-B pulsars 13/02/13S. Tendulkar, RRI

Astrometry 13/02/13S. Tendulkar, RRI

Galactic Rotation 13/02/13S. Tendulkar, RRI 2013 No quasars – Absolute astrometry is challenging Model galactic rotation – Along line of sight – SDSS stellar density – Estimate bulk motion Progenitor Velocity 45