14 1) the same 2) twice as much 3) four times as much 4) half as much 5) you gain no PE in either case Two paths lead to the top of a big hill. One is.

Slides:



Advertisements
Similar presentations
ConcepTest 6.1 To Work or Not to Work
Advertisements

ConcepTest 6.2a Friction and Work I
Module 5, Recitation 3 Concept Problems, Gravitational Potential Energy.
UNIT 4 Work, Energy, and Power. How does the work required to stretch a spring 2 cm compare with the work required to stretch it 1 cm? 1) same amount.
ConcepTest 5.1 To Work or Not to Work
Which of the following is the best description of the dot product ? Dot Product.
Module 5, Recitation 3 Concept Problems, Gravitational Potential Energy.
ConcepTest 7.2 KE and PE You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen.
ConcepTest 6.5a Kinetic Energy I
ConcepTest Clicker Questions
© 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
ConcepTest 5.1 To Work or Not to Work
ConcepTest Clicker Questions College Physics, 7th Edition
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Gravitational potential energy. Conservation of energy
ConcepTest 6.1 To Work or Not to Work
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
An object is released from rest on a planet that
Work and Energy Conceptual MC
A system can be defined such that there are no external forces acting on the system. In this situation the system is called an isolated system, since it.
Energy Chapter 5. Mechanical Energy Energy due to movement or position. Energy due to movement or position. Kinetic Energy – energy of motion Kinetic.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
1 By what factor does the kinetic energy of a car change when its speed is tripled? 1) no change at all 2) factor of 3 3) factor of 6 4) factor of.
Conservation of Energy Energy is Conserved!. The total energy (in all forms) in a “closed” system remains constant The total energy (in all forms) in.
Review for Exam #3 October 26, Is it possible to do work on an object that remains at rest? 1.Yes 2.No.
Conservation of Energy Lecturer: Professor Stephen T. Thornton
Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest 6.1To Work or Not to Work ConcepTest 6.1 To Work or Not to Work.
Conservation of Energy November The conservation of energy.  In a closed system, energy is neither created nor destroyed. Energy simply changes.
Chapter 5 Energy Phy 2053 Conceptual Questions
Work and Kinetic Energy
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Announcements CAPA Set #9 due Friday at 10 pm This week in Section: Lab #3 – Momentum Reading – Chapter 7 on Momentum.
Physics Chapter 11 Energy.
How much work does a 154 lb. student do when climbing a flight of stairs that are 6 meters in height and 30 meters in length? If the stairs are climbed.
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Module 5, Recitation 2 Concept Problems, Power. ConcepTest Time for Work I 1) Mike 2) Joe 3) both did the same work Mike applied 10 N of force over 3.
Is it possible to do work on an object that remains at rest? a) yes b) no ConcepTest 3.1To Work or Not to Work ConcepTest 3.1 To Work or Not to Work.
Chapter 7 Work and Kinetic Energy
Work and Energy: Jeopardy Review Game $2 $5 $10 $20 $1 $2 $5 $10 $1 $2 $5 $10 $1 $2 $5 $20 $5 $1 Kinetic Energy Potential Energy MachinesWork and Power.
You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y =
Is it possible to do work on an object that remains at rest? 1) yes 2) no.
Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest 7.1To Work or Not to Work ConcepTest 7.1 To Work or Not to Work.
Module 5, Recitation 2 Concept Problems, Power. ConcepTest Time for Work I 1) Mike 2) Joe 3) both did the same work Mike applied 10 N of force over 3.
Is it possible to do work on an object that remains at rest? 1) yes 2) no.
Sub title Potential Energy Work Work- Energy Theorem Kinetic Energy Power 200 Work-Power-Energy.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 7 Physics, 4 th Edition James S. Walker.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Reading and Review. A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s.
Work and Energy. What is energy? Defined as “ability to do work” But, what is work? Work = Force * displacement When work is done, energy is transferred.
Motion, Forces and Energy Lecture 7: Potential Energy & Conservation The name potential energy implies that the object in question has the capability of.
Is it possible to do work on an object that remains at rest? 1) yes 2) no 1. ConcepTest 6.1To Work or Not to Work 1. ConcepTest 6.1 To Work or Not to Work.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Everyone grab a small whiteboard and a dry erase marker.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
POWER AND EFFICIENCY PLUS SOME REVIEW OF WORK AND ENERGY.
Copyright © by Holt, Rinehart and Winston. All rights reserved. Chapter 5 Work and Energy.
Physics: Principles with Applications, 7th edition
Potential Energy and Conservation of Energy
Is it possible for the gravitational potential energy of an object to be negative? 1) yes 2) no.
1 Two paths lead to the top of a big hill. One is steep and direct, while the other is twice as long but less steep. How much more potential energy.
AP PHYSICS B Take home PART WAIT WAIT DON’T TELL ME!!!!!!!!!
1 You see a leaf falling to the ground with constant speed. When you first notice it, the leaf has initial total energy PEi + KEi. You watch the leaf.
ConcepTest Clicker Questions Chapter 8
Physics: Principles with Applications, 7th edition
Physics of Everyday Phenomena
Power and Efficiency Plus some review of work and energy.
Physics: Principles with Applications, 6th edition
Presentation transcript:

14 1) the same 2) twice as much 3) four times as much 4) half as much 5) you gain no PE in either case Two paths lead to the top of a big hill. One is steep and direct, while the other is twice as long but less steep. How much more potential energy would you gain if you take the longer path?

How does the work required to stretch a spring 2 cm compare with the work required to stretch it 1 cm? 1) same amount of work 2) twice the work 3) 4 times the work 4) 8 times the work15

A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s potential energy (PE s ) and the gravitational potential energy (PE g ) of the mass? 1) both PE s and PE g decrease 2) PE s increases and PE g decreases 3) both PE s and PE g increase 4) PE s decreases and PE g increases 5) PE s increases and PE g is constant16

17 Three balls of equal mass start from rest and roll down different ramps. All ramps have the same height. Which ball has the greater speed at the bottom of its ramp? 1 4) same speed for all balls 2 3

18 A truck, initially at rest, rolls down a frictionless hill and attains a speed of 20 m/s at the bottom. To achieve a speed of 40 m/s at the bottom, how many times higher must the hill be? 1) half the height 2) the same height 3)  2 times the height 4) twice the height 5) four times the height

x19 A box sliding on a frictionless flat surface runs into a fixed spring, which compresses a distance x to stop the box. If the initial speed of the box were doubled, how much would the spring compress in this case? 1) half as much 2) the same amount 3)  2 times as much 4) twice as much 5) four times as much

20 1) Paul 2) Kathleen 3) both the same Paul and Kathleen start from rest at the same time on frictionless water slides with different shapes. At the bottom, whose velocity is greater?

You see a leaf falling to the ground with constant speed. When you first notice it, the leaf has initial total energy PE i + KE i. You watch the leaf until just before it hits the ground, at which point it has final total energy PE f + KE f. How do these total energies compare? 1) PE i + KE i > PE f + KE f 2) PE i + KE i = PE f + KE f 3) PE i + KE i < PE f + KE f 4) impossible to tell from the information provided21

23 1) Mike 2) Joe 3) both did the same work Mike applied 10 N of force over 3 m in 10 seconds. Joe applied the same force over the same distance in 1 minute. Who did more work?

Mike performed 5 J of work in 10 secs. Joe did 3 J of work in 5 secs. Who produced the greater power? 1) Mike produced more power 2) Joe produced more power 3) both produced the same amount of power24

Engine #1 produces twice the power of engine #2. Can we conclude that engine #1 does twice as much work as engine #2? 1) yes 2) no25

1) energy 2) power 3) current 4) voltage 5) none of the above26 When you pay the electric company by the kilowatt-hour, what are you actually paying for?

27 Which contributes more to the cost of your electric bill each month, a 1500-Watt hair dryer or a 600-Watt microwave oven? 1) hair dryer 2) microwave oven 3) both contribute equally 4) depends upon what you cook in the oven 5) depends upon how long each one is on 1500 W 600 W