Lecture Twelve.

Slides:



Advertisements
Similar presentations
Building Spacetime Diagrams PHYS 206 – Spring 2014.
Advertisements

Physics Lecture Resources
Lorentz transformation
Lecture 13 Space Time Diagrams ASTR 340 Fall 2006 Dennis Papadopoulos.
1 Special Relativity 2. 2 Topics l Recap l Length Contraction l Cosmic Ray Muons l Spacetime l Summary.
Denavit-Hartenberg Convention
Derivation of Lorentz Transformations
Static equilibrium : the two conditions for a body in static equilibrium are: (1)The vector sum of all the external forces acting on the body is zero.
Example of auxiliary view
Physics 311 Special Relativity Lecture 5: Invariance of the interval. Lorentz transformations. OUTLINE Invariance of the interval – a proof Derivation.
1 Length contraction Length measured differs from frame to frame – another consequence of relativistic effect Gedankan experiment again!
Modern Physics (PC300) Class #5 Cool, but not as fast as we are talking about! Notes: Test a week from Tuesday Old tests are avail. Homework due Wednesday.
PHY 1371Dr. Jie Zou1 Chapter 39 Relativity. PHY 1371Dr. Jie Zou2 Outline The principle of Galilean relativity Galilean space-time transformation equations.
Lecture 15 Today Transformations between coordinate systems 1.Cartesian to cylindrical transformations 2.Cartesian to spherical transformations.
Event P is shown by a small x. At what time (in the primed frame) does P occur? A] at ct’=1 B] at ct’=2 C] at ct’=3 D] at ct’=4.
Lecture Five. Simultaneity and Synchronization Relativity of Simultaneity.
PHY 1371Dr. Jie Zou1 Chapter 39 Relativity (Cont.)
Lecture Six. Kinematical Relations in Special Relativity.
A Harvard pole vaulter carries a pole that is just as long as a barn. He encounters a NJ farmer. Overhead view: Is this Nonsense? -- Space & Time are Relative.
Life in the fast lane: the kinematics of Star Trek.
Chapter 37 Special Relativity. 37.2: The postulates: The Michelson-Morley experiment Validity of Maxwell’s equations.
General Relativity Physics Honours 2005 Dr Geraint F. Lewis Rm 557, A29
Special Relativity. Topics Motion is Relative Michelson-Morley Experiment Postulates of the Special Theory of Relativity Simultaneity Spacetime Time Dilation.
1 Tutorial Reminder Please download the tutorial from the course web page and try them out Tutorial class will be conducted on 12 DEC 03 (Friday) Submit.
NJIT Physics 320: Astronomy and Astrophysics – Lecture IV Carsten Denker Physics Department Center for Solar–Terrestrial Research.
4-vectors: Four components that Lorentz transform like ct, x, y, z.
Lecture 14 Space-time diagrams (cont) ASTR 340 Fall 2006 Dennis Papadopoulos.
PH300 Modern Physics SP11 “The only reason for time is so that everything doesn’t happen at once.” - Albert Einstein 2/1 Day 6: Questions? Spacetime Addition.
1 PH300 Modern Physics SP11 1/27 Day 5: Questions? Time Dilation Length Contraction Next Week: Spacetime Relativistic Momentum & Energy “I sometimes ask.
The Lorentz Transformation Section 4. An event has coordinates x,y,z,t in the K system x’,y’,z’,t’ in the K’ system What is the formula that transforms.
Module 3Special Relativity1 Module 3 Special Relativity We said in the last module that Scenario 3 is our choice. If so, our first task is to find new.
Little drops of water, little grains of sand, make the mighty ocean and the pleasant land. Little minutes, small though they may be, make the mighty ages.
Special Relativity The Failure of Galilean Transformations
It’s all Relativity. March, 1905: Twenty six year old Albert Einstein demonstrates the particle nature of light by explaining the photoelectric effect.
Education Physics Deparment UNS
Physics 2170 – Spring Special relativity Homework solutions are on CULearn Remember problem solving sessions.
PAP: Perpendicular to HP and 45o to VP.
My Chapter 26 Lecture.
PART TWO: RELATIVISTIC MECHANICS PHYS 141: Principles of Mechanics.
Consequences of Special Relativity Simultaneity: Newton’s mechanics ”a universal time scale exists that is the same for all observers” Einstein: “No universal.
Length Contraction. Relative Space  An observer at rest measures a proper time for a clock in the same frame of reference.  An object also has a proper.
Physics 2170 – Spring Special relativity Homework solutions will be on CULearn by 5pm today. Next weeks.
Chapter 39 Relativity. A Brief Overview of Modern Physics 20 th Century revolution 1900 Max Planck Basic ideas leading to Quantum theory 1905 Einstein.
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 11, 2013 Dr. Jaehoon Yu Time Dilation & Length Contraction Relativistic Velocity Addition Twin Paradox.
Chapter 36 The Special Theory of Relativity (Special Relativity Principle)
Chapter 1 Relativity 1.
Derivation of Lorentz Transformations Use the fixed system K and the moving system K’ At t = 0 the origins and axes of both systems are coincident with.
1 1.Time Dilation 2.Length Contraction 3. Velocity transformation Einstein’s special relativity: consequences.
Special Relativity Lecture 25 F2013 Lorentz transformations 1.
Lecture 5: PHYS344 Homework #1 Due in class Wednesday, Sept 9 th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
About length contraction Moving bodies are short.
PHYS 342: More info The TA is Meng-Lin Wu: His is His office hour is 10:30am to 12pm on Mondays His office is Physics.
Problem: A rocket travels away from earth at constant speed v to planet Q. The trip takes 100 years, as measured on earth but only 25 years as measured.
Life in the fast lane: the kinematics of Star Trek
Administrative Details: PHYS 344
Quiz_09 Relativity – simultaneity, time dilation, length contraction
Lecture 4: PHYS 344 Homework #1 Due in class Wednesday, Sept 9th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
Newtonian Relativity A reference frame in which Newton’s laws are valid is called an inertial frame Newtonian principle of relativity or Galilean invariance.
Einstein’s Relativity Part 2
Special Relativity Lecture 2 12/3/2018 Physics 222.
Given eqns Also P4.
Special relativity Physics 123 1/16/2019 Lecture VIII.
Special relativity: energy, momentum and mass
The Galilean Transformations
RELATIVITY III SPECIAL THEORY OF RELATIVITY
The Galilean Transformation
The Galilean Transformations
Cosmology 5022 Relativity.
Relativistic Kinematics
Chapter 37 Special Relativity
Presentation transcript:

Lecture Twelve

Spacetime Geometry: Brehme Diagram and Loedel Diagram

Relativistic Kinematics: Relativistic Vista of Spacetime

Geometry of Relativity

Cartesian Coordinates y y • P (x, y) • x O x

Cartesian Coordinates y' y' • P (x', y') • O x' x'

Cartesian Coordinates invariance of distance y y' y' y • P (x', y') P (x, y) • x O x x' x'

Invariance of Spacetime Interval

Brehme Spacetime Diagram Exchange Ot axis and Ot' axis

Brehme Spacetime Diagram ct' ct x' O • x

Oblique Coordinates ct O • x

Brehme Diagram (perpendicular components) ct • E (ct, x) ct • x O x

Loedel Diagram (parallel components) ct ct • E (ct, x) • x O x

World Line

World Line ct ct3 ct2 • E ct1 • x O x1 x2 x3

World Line rest at x in  for all time t parallel to t -axis ct • E •

World Line • E • rest at x' in  ' for all time t' ct' ct rest at x' in  ' for all time t' parallel to t' -axis perpendicular to x -axis • E x' • x' • x O

World Line ct • E ct2 ct1 • x O x1 x2

World Line of Light 角平分線 ct T • • E 3 4 ct 2 1 X O • • x x

World Line of O' ct x ct • E ct ct x • x O x

Question: world line 與 trajectory 有何不同?

Loedel Diagram ct' ct x' • E x' ct' ct' x' • x O

Loedel Diagram ct' ct x' • E x' ct' ct' • x O x'

Loedel Diagram • • • • ct' ct • E (ct, x) or E(ct', x') ct x' ct' x' •

Principle of Constancy of Light Speed ct' ct • • E E(ct, x) ct x' • O • x x

Principle of Constancy of Light Speed ct' ct • E E(ct', x') • ct' x' • x' O • x

Principle of Constancy of Light Speed ct' ct • • E(ct , x) or (ct', x') ct • ct' x' • x' • O • x x

Time Dilation

Time Dilation ct' ct • E2 C2 • • A2 c • E1 ct x' • • A1 C1 • x' • x O

Time Dilation • • • • • • • • • ct' ct E2 B2 C2 ct A2 proper time c x' • • A1 C1 • x' same place in  ' • x O

Time Dilation • • • • • • • ct' ct E2 C2 A2 proper time c E1 ct x' A1

Time Dilation ct' ct • C2 • • A2 E2 ct c • C1 x' • • E1 A1 x • • x O

Time Dilation • • • • • • • • • ct' ct C2 A2 E2 ct' B2 c proper time x' • C1 • E1 A1 • B1 x • • x O same place in 

Time Dilation • • • • • • • ct' ct C2 A2 E2 ct' c proper time C1 x'

Simultaneity

World Line of Light 角平分線 ct O • x

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • v ct' • D • O' C • • • • ct B O A • B • v • x' D C • • O' C • • • • • • • B O A • A D • x O v • D • O' C • • • • O B A • • v D • • O' C • • • • B O A

Events C and D • • • • • • • • • • • • • • • • • • • • • • • • • • • ct' • D • O' C • • • • ct B O A v • • x' D C • • O' C • • • • • • • • B O A A D • x O v • D • O' C • simultaneous in  ' • • • O B A t'C = t'D • • tD < tC

• • • • • • • • • • • • • • • • • • • • • • • • • ct' O' ct -v O x' O'

• • • • • • • • • • • • ct ct' E2 after E1 in  ' ct2 E1 In  , E2 and E1 are simultaneous • ct2 • • • E1 E1(x,t2) or (x',t2') E2 • ct2' x' E2' • • • E2' before E1 in  x' • • • x x O In  ', E2' and E1 are simultaneous •

Length Contraction

Length Contraction • • • • • • L B A L0 (proper length) ct' ct ct1 simultaneous measurements at time t1 in  x' B • A • L0 (proper length) O • x world lines of A and B

Length Contraction • • • • • • L A B L0 (proper length) ct' ct ct'1 simultaneous measurements at time t'1 in  ' x' world lines of A and B A B • • O • x L0 (proper length)

Off Synchronization

Off -Synchronization • • • • • c = L sin  L ct' = L v/c ct (proper time) Time dilation : ct' =   ct Time dilation : ct =   (ct' - c ) x' • x O • L trailing clock leading clock

Lorentz Transformation

Lorentz Transformation ct' ct • B • E (ct, x) or E(ct', x') D • x' ct ct' • x' C • C' • • x O A x

Lorentz Transformation ct' ct x • B • E (ct, x) or E(ct', x') D • x' • D' ct ct' C • x' • • x x O A

Comparison of Loedel Diagram and Brehme Diagram

Loedel Diagram Parallel Component Contravariant Component Brehme Diagram Perpendicular Component Covariant Component

Summary

Geometry; Invariance of Spacetime; Constancy of Speed of Light