QUANTUM DYNAMICS OF A COOPER PAIR TRANSITOR COUPLED TO A DC-SQUID Aurélien Fay under the supervision of : Olivier BUISSON - Wiebke GUICHARD - Laurent LEVY.

Slides:



Advertisements
Similar presentations
A coherent subnanosecond single electron source
Advertisements

Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura & J. S. Tsai Presented.
Bolometric astronomical imaging at mm wavelengths
Metastability and self-oscillations in superconducting microwave Eran Segev Quantum Engineering Laboratory, Technion, Israel resonators integrated with.
Superconducting qubits
Technological issues of superconducting charge qubits Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai Dmitri Averin NEC Tsukuba - SUNY.
The feasibility of Microwave- to-Optical Photon Efficient Conversion By Omar Alshehri Waterloo, ON Fall 2014
Quantum Computer Implementations
Josepson Current in Four-Terminal Superconductor/Exciton- Condensate/Superconductor System S. Peotta, M. Gibertini, F. Dolcini, F. Taddei, M. Polini, L.
14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere.
Quantum Coherent Nanoelectromechanics Robert Shekhter Leonid Gorelik and Mats Jonson University of Gothenburg / Heriot-Watt University / Chalmers Univ.
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Materials Science in Quantum Computing. Materials scientist view of qubit Materials –SiOx sub substrate –Superconductor (Al,Nb) –SiO x dielectric –Al0.
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
Memory Designing Using Josephson Gates Susmit Biswas 02/07/2006.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Long-lived spin coherence in silicon with electrical readout
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P.
Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.
Josephson Junction based Quantum Control Erick Ulin-Avila Seth Saltiel.
Josephson Junctions, What are they?
Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Submicron structures 26 th January 2004 msc Condensed Matter Physics Photolithography to ~1 μm Used for... Spin injection Flux line dynamics Josephson.
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Excitations, Bose-Einstein Condensation and Superfluidity in Liquid 4 He Henry R. Glyde Department of Physics & Astronomy University of Delaware.

Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
A two-qubit conditional quantum gate with single spins F.Jelezko, J. Wrachtrup I. Popa, T. Gaebel, M. Domhan, C. Wittmann Univ. of Stuttgart.
Bloch band dynamics of a Josephson junction in an inductive environment Wiebke Guichard Grenoble University –Institut Néel In collaboration with the Josephson.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Paraty - II Quantum Information Workshop 11/09/2009 Fault-Tolerant Computing with Biased-Noise Superconducting Qubits Frederico Brito Collaborators: P.
J. R. Kirtley et al., Phys. Rev. Lett. 76 (1996),
Dynamical decoupling in solids
Dynamics of a Resonator Coupled to a Superconducting Single-Electron Transistor Andrew Armour University of Nottingham.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
M.T. Bell et al., Quantum Superinductor with Tunable Non-Linearity, Phys. Rev. Lett. 109, (2012). Many Josephson circuits intended for quantum computing.
SQUIDs (Superconducting QUantum Interference Devices)
Quantum Metrological Triangle Centre for Metrology and Accreditation (MIKES) TKK Low Temperature Laboratory VTT Quantronics group Antti Manninen MIKES.
Quantum measurement and superconducting qubits Yuriy Makhlin (Landau Institute) STMP-09, St. Petersburg 2009, July 3-8.
On Measuring Coherence in Coupled Dangling-Bond Pair Dynamics Zahra Shaterzadeh-Yazdi International Iran Conference on Quantum Information September.
Meet the transmon and his friends
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
Spin Readout with Superconducting Circuits April 27 th, 2011 N. Antler R. Vijay, E. Levenson-Falk, I. Siddiqi.
Temperature and sample dependence of spin echo in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University Physics Department.
Optically detected magnetic resonance of silicon vacancies in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Single Electron Transistor (SET)
Measuring Quantum Coherence in the Cooper-Pair Box
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
2 Qubits: Coupled pair of DQD. Physical system and effective Hamiltonian Electrostatic coupling between DQD1 and DQD2.
Challenge the future Delft University of Technology Phase-slip Oscillator Alina M. Hriscu, Yuli V. Nazarov Kavli Institute for Nanoscience, TU Delft Acknowledgements.
The rf-SQUID Quantum Bit
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Orbitally phase coherent spintronics
Circuit QED Experiment
Superconducting Qubits
Research on Quantum Metrology
Cavity Quantum Electrodynamics for Superconducting Electrical Circuits
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

QUANTUM DYNAMICS OF A COOPER PAIR TRANSITOR COUPLED TO A DC-SQUID Aurélien Fay under the supervision of : Olivier BUISSON - Wiebke GUICHARD - Laurent LEVY Centre de Recherche sur les Très Basses Températures Laboratoire des Champs Magnétiques Intenses (GHMFL) GRENOBLE

CIRCUIT FABRICATION BY ELECTRONIC LITHOGRAHY DC-SQUID COOPER PAIR TRANSISTOR

CHARGE QUBIT : COOPER PAIR TRANSISTOR Charge Energy Josephson Energy Two levels system at p g = 0.5 VgVg 300 nm

JJs 15 μm² superconducting loop 15  m IpIp  dc PHASE QUBIT : DC-SQUID |0|0 |1|1 |2|2 MW  p (I p,  dc )  U (I p,  dc ) J. Claudon and al., Coherent oscillations in a superconducting multi-level quantum system, Phys. Rev. Lett. 93, (2004). Multi level system

1/190 MHz COUPLING BETWEEN A COOPER PAIR TRANSISTOR AND DC-SQUID (TRSQ) 190 MHz  pulse PgPg t VgVg On resonance