Introduction to Probability The problems of data measurement, quantification and interpretation.

Slides:



Advertisements
Similar presentations
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Advertisements

Probability Unit 3.
Probability Simple Events
Chapter 4 Probability and Probability Distributions
Statistical processes 1 Probability Introduction.
COUNTING AND PROBABILITY
© 2011 Pearson Education, Inc
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Chapter 3 Probability.
NIPRL Chapter 1. Probability Theory 1.1 Probabilities 1.2 Events 1.3 Combinations of Events 1.4 Conditional Probability 1.5 Probabilities of Event Intersections.
1 Chapter 6: Probability— The Study of Randomness 6.1The Idea of Probability 6.2Probability Models 6.3General Probability Rules.
4.2 Probability Models. We call a phenomenon random if individual outcomes are uncertain but there is nonetheless a regular distribution of outcomes in.
2-1 Sample Spaces and Events Conducting an experiment, in day-to-day repetitions of the measurement the results can differ slightly because of small.
Probability (cont.). Assigning Probabilities A probability is a value between 0 and 1 and is written either as a fraction or as a proportion. For the.
1 Basic Probability Statistics 515 Lecture Importance of Probability Modeling randomness and measuring uncertainty Describing the distributions.
Class notes for ISE 201 San Jose State University
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 4-2 Basic Concepts of Probability.
Fundamentals of Probability
Chapter 6 Probability.
Lecture II.  Using the example from Birenens Chapter 1: Assume we are interested in the game Texas lotto (similar to Florida lotto).  In this game,
Lecture 7 Dustin Lueker.  Experiment ◦ Any activity from which an outcome, measurement, or other such result is obtained  Random (or Chance) Experiment.
Basic Concepts and Approaches
Probability Chapter 3. § 3.1 Basic Concepts of Probability.
Chapter 4 Probability See.
Chapter 4 Probability 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule
5.1 Basic Probability Ideas
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Basic Principle of Statistics: Rare Event Rule If, under a given assumption,
Chapter 8 Probability Section R Review. 2 Barnett/Ziegler/Byleen Finite Mathematics 12e Review for Chapter 8 Important Terms, Symbols, Concepts  8.1.
“PROBABILITY” Some important terms Event: An event is one or more of the possible outcomes of an activity. When we toss a coin there are two possibilities,
EXIT NEXT Click one of the buttons below or press the enter key BACKTOPICSProbability Mayeen Uddin Khandaker Mayeen Uddin Khandaker Ph.D. Student Ph.D.
Ex St 801 Statistical Methods Probability and Distributions.
CHAPTER 5 Probability: Review of Basic Concepts
Chapter 4 Correlation and Regression Understanding Basic Statistics Fifth Edition By Brase and Brase Prepared by Jon Booze.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin A Survey of Probability Concepts Chapter 5.
LECTURE 15 THURSDAY, 15 OCTOBER STA 291 Fall
Introduction to Probability  Probability is a numerical measure of the likelihood that an event will occur.  Probability values are always assigned on.
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. Probability is a numerical measure of the likelihood Probability is a numerical measure of the.
2-1 Sample Spaces and Events Random Experiments Figure 2-1 Continuous iteration between model and physical system.
Basic Concepts of Probability Coach Bridges NOTES.
Chapter 4 Probability ©. Sample Space sample space.S The possible outcomes of a random experiment are called the basic outcomes, and the set of all basic.
From Randomness to Probability Chapter 14. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,
Probability You’ll probably like it!. Probability Definitions Probability assignment Complement, union, intersection of events Conditional probability.
POSC 202A: Lecture 4 Probability. We begin with the basics of probability and then move on to expected value. Understanding probability is important because.
1 Probability: Liklihood of occurrence; we know the population, and we predict the outcome or the sample. Statistics: We observe the sample and use the.
Probability: Terminology  Sample Space  Set of all possible outcomes of a random experiment.  Random Experiment  Any activity resulting in uncertain.
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved. Essentials of Business Statistics: Communicating with Numbers By Sanjiv Jaggia and.
Dr. Fowler AFM Unit 7-8 Probability. Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.
Measuring chance Probabilities FETP India. Competency to be gained from this lecture Apply probabilities to field epidemiology.
Lecture 7 Dustin Lueker. 2STA 291 Fall 2009 Lecture 7.
BIA 2610 – Statistical Methods
Probability. What is probability? Probability discusses the likelihood or chance of something happening. For instance, -- the probability of it raining.
+ Chapter 5 Overview 5.1 Introducing Probability 5.2 Combining Events 5.3 Conditional Probability 5.4 Counting Methods 1.
Introduction Remember that probability is a number from 0 to 1 inclusive or a percent from 0% to 100% inclusive that indicates how likely an event is to.
AP Statistics Section 6.2 B Probability Rules. If A represents some event, then the probability of event A happening can be represented as _____.
Chapter 4 Probability Concepts Events and Probability Three Helpful Concepts in Understanding Probability: Experiment Sample Space Event Experiment.
STATISTICS I COURSE INSTRUCTOR: TEHSEEN IMRAAN. CHAPTER 5 PROBABILITY.
PROBABILITY AND BAYES THEOREM 1. 2 POPULATION SAMPLE PROBABILITY STATISTICAL INFERENCE.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
1 Probability- Basic Concepts and Approaches Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND.
3-1 Copyright © 2014, 2011, and 2008 Pearson Education, Inc.
PROBABILITY 1. Basic Terminology 2 Probability 3  Probability is the numerical measure of the likelihood that an event will occur  The probability.
AP Statistics From Randomness to Probability Chapter 14.
Probability and statistics - overview Introduction Basics of probability theory Events, probability, different types of probability Random variable, probability.
1 What Is Probability?. 2 To discuss probability, let’s begin by defining some terms. An experiment is a process, such as tossing a coin, that gives definite.
Chapter 4 Probability Concepts
Chapter 6 6.1/6.2 Probability Probability is the branch of mathematics that describes the pattern of chance outcomes.
What is Probability? Quantification of uncertainty.
Lecture 11 Sections 5.1 – 5.2 Objectives: Probability
Chapter 3 Probability.
Probability Union Intersection Complement
Presentation transcript:

Introduction to Probability The problems of data measurement, quantification and interpretation

Is the mere act of quantification Science?

What is probability?

Measuring probability

Event It is a simple process with a well- recognized beginning and end

Outcome One of the alternatives through which an event manifests

Sample space The set formed from all possible outcomes of an event

Trial A single complete instance of a process of testing Statisticians refer to each trial as an individual replicate, and refer to a set of trials as an experiment

By definition !! 0.0 < P < 1.0

Probability Most statistics textbooks define probability just as we have done: the (expected) frequency with which events occur

An example of a trial: flipping a coin… An example of an experiment: flipping a coin several times... Sample space: {heads} {tails}...

Random and Deterministic processes When we say that events are random, stochastic, probabilistic, or due to chance, what we really mean is that their outcomes are determined in part by a complex set of processes that we are unable or unwilling to measure and will instead treat as random The strength of other processes that we measure, manipulate, and model represent deterministic or mechanistic forces

The mathematics of Probability Axiom 1: the sum of the probabilities of outcomes within a single sample space =1.0 In a properly defined sample space the outcomes are mutually exclusive and exhaustive

The whirligig beetle These beasts always produce exactly two litters, with between 2 and 4 offspring per litter

The lifetime reproductive success of a beetle can be described as an outcome (a,b) where a represents the number of offspring in the first litter and b the number of offspring in the second litter

The sample space Whirligig Beetle Fitness consists of all possible lifetime reproductive outcomes: Fitness = {(2,2),(2,3),(2,4) (3,2),(3,3),(3,4) (4,2),(4,3),(4,4)} P(2,2)=P(2,3)=P(2,4) = … =P(4,4) 1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9=1

Complex events Are composites of simple events in the sample space A complex event can be achieved by one of several pathways ( OR statement ) Event A or Event B or Event C, represented by the union of simple events (A U B U C)

Complex events: summing probabilities What is the probability that a whirligig beetle produces 6 offspring? 6 offspring ={(2,4),(3,3),(4,2)} Fitness (2,2) (3,4) (2,3) (4,4) (4,3) (2,4) (3,2) (3,3) (4,2) 6 offspring

Complex events Axiom 2: the probability of a complex event equals the sum of the probabilities of the outcomes that make up that event P (6 offspring) = P(2,4) or P(3,3) or P(4,2) = 1/9+1/9+1/9 = 3/9 = 1/3 P(A or B or C)= P(A)+P(B)+P(C)

Shared events Are multiple simultaneous occurrences of simple events in the sample space A shared event requires the simultaneous occurrence of two or more simple events ( AND statement ) Event A and Event B and Event C, represented by the intersection of simple events (A ∩ B ∩ C)

Shared events: multiplying probabilities If, instead, we assume the number of offspring produced in the second litter is independent of the number produced in the first litter Suppose that an individual can produce 2,3,4 offspring in each litter and that the chances of each of these events are 1/3. What is the probability of obtaining the pair of litters (2,4)? 2,4 offspring ={(2,4)}

Independence Two events are independent of one another if the outcome of one event is not affected by the outcome of the other If two events are independent of one another, then probability that both events occur (a shared event) equals the product of their individual probabilities

If A and B are independent (2) (3)(4) Fitness (2) (3) (4) First litterSecond litter 1/3*1/3=1/9

Milkweeds and Caterpillars

Probability calculations Imagine two kinds of milkweed populations: those that evolved secondary chemicals that make them resistant (R) to the herbivore, and those that haven’t (not R) Suppose you census a number of milkweed populations and determine that 20% of the populations are resistant to the herbivore Thus P(R)=0.20; P(not R)=0.80

Probability calculations Similarly, suppose that the probability that the caterpillar (C) occurs in a patch is 0.7 Then P(C)=0.7; P(not C)=0.3. If colonization events are independent of one another, What are the chances of finding either caterpillars, milkweeds, or both in these patches? What is the probability that the milkweed will disappear?

Probability calculations Shared event Probability calculation Milkweed resistant Caterpillar present Susceptible & no caterpillar [1-P(R)]*[1-P(C)]= 0.8*0.3=0.24 NO Susceptible & caterpillar [1-P(R)]*[P(C)]= 0.8*0.7=0.56 NOYES Resistant & no caterpillar [P(R)]*[1-P(C)]= 0.2*0.3=0.06 YESNO Resistant & caterpillar [P(R)]*[P(C)]= 0.2*0.7=0.14 YES

Notice = =0.20 (probability of resistance) =0.70 (probability of caterpillar presence) 0.56 Probability that milkweed will disappear

Rules for combining sets when events are not independent Suppose in our sample space there are two identifiable events, each of which consists of a group of outcomes: 1. whirligig that produces exactly 2 offspring in the first litter (F) 2. whirligig that produces exactly 4 offspring in the second litter (S)

Rules for combining sets when events are not independent Fitness ={(2,2),(2,3),(2,4) (3,2),(3,3),(3,4) (4,2),(4,3),(4,4)} F={(2,2),(2,3),(2,4)} S={(2,4),(3,4),(4,4)} F={(2,2),(2,3),(2,4)} S={(2,4),(3,4),(4,4)}

Venn diagram Fitness (2,2) (3,4) (2,3) (4,4) (4,3) (2,4) (3,2) (3,3) (4,2) F S

Rules for combining sets when events are not independent We can construct a third useful set by considering the set F c, called the complement of F, which is the set of objects in the remaining sample space F c ={(3,2),(3,3),(3,4),(4,2),(4,3),4,4)} From axioms 1 and 2: P(F)+P(F c )=1

Empty set The empty set contains no elements and is written as =

Calculating probabilities of combined events If: ={ } then:

How to estimate the probability that a whirligig produces 6 offspring, if the number of offspring produced in the second litter depends on the number of offspring in the first litter? Recall the complex event 6 offspring is P(6 offspring) = {(2,4),(3,3),(4,2)} = 3/9 (or 1/3) If you observed that the first litter was 2 offspring, what is the probability that the whirligig will produce 4 offspring next time? Answer = 1/3 is correct, but why??????

Conditional probabilities If we are calculating the probability of a complex event, and we have information about the outcome of that event, we should modify our estimates of the probabilities of other outcomes accordingly. We refer to these updated estimates as conditional probabilities P(A│B) or the probability of event A given event B

The probability of A is calculated assuming that the event B has already occurred:

Rearranging the formula gives us a general formula for calculating the probability of an intersection: Note that if two events A and B are independent, then P(A|B)=P(A), so that

Until now, we have discussed probability using what is know as the frequentist paradigm, in which probabilities are estimated as the relative frequencies of outcomes based on an infinitely large set of trials Scientists start assuming NO prior knowledge of the probability of an event, and re-estimate the probability based on a large number of trials The frequentist paradigm

In contrast is the Bayesian paradigm, which builds on the idea that investigators may already have a belief about the probability of an event, before the trials are conducted. These prior probabilities may be based on previous experience, intuition, or model predictions These prior probabilities are then modified by the data from the current trial to yield posterior probabilities. Bayes’ Theorem

The probability of an event or outcome A conditional on another event B can be determined if you know the probability of the event B conditional on the event A and you know the complement of A

An important distinction For example, the distinction between: 1.P(C|R), the probability that caterpillars are found given a resistant population of milkweeds. To estimate P(C|R), we would need to examine populations of resistant milkweeds to determine the frequency with which these populations were hosting caterpillars

An important distinction and: 2.P(R|C), the probability that milkweeds are resistant given that they are eaten by caterpillars. To estimate P(R|C), we would need to examine caterpillars to determine the frequency with which their host plants are resistant.

Probability is completely contingent on how we define the sample space In general, we all have intuitive estimates for probabilities for all kinds of events. However, to quantify those guesses, we have to decide on a sample space, take samples, and count the frequency with which certain events occur

Estimating probability by sampling We can efficiently estimate the probability of an event by taking a sample of the population of interest Exercise 1 Part 1, with cards

Estimating probabilities by sampling 1.Using playing cards identify Kings, Queens, Jacks and Aces as “captures”, and the rest of the cards as “non captures”. 2.What is the probability of “capture”? 3.Shuffle to provide an element of chance in the game. 4.Take at random four cards and note how many of them are “captures” 5.Repeat this procedure (Steps 3. and 4.) 20 times 6.What is the expected value of the capture probability? students will have one week to complete this exercise

Estimating probabilities by sampling Do the same exercise, but use only the heart suit What is the expected value of the capture probability? How different is the result among the games you played?

Write an algorithm (sequence of instructions) in Excel that simulates the game previously described (be creative) Play the game 10 and 20 times How different are the results from the games you played? (present the results as histograms) What is the expected value of the capture probability? Exercise 1 Part 2, A model of the game

Example of Histogram The numbers on the horizontal axis, or x-axis indicate the number of “captures” The numbers on the vertical axis or y-axis indicate the frequency