Millisecond pulsar population and related high energy phenomena 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.

Slides:



Advertisements
Similar presentations
X-ray pulsars in wind-fed accretion systems 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Advertisements

Pulsar High Energy Emission Models: What Works and What Doesn't “Standard” outer magnetosphere models - successes Shortcomings of the models Next steps?
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Mass transfer in a binary system
Neutron Stars and Black Holes
Young X-ray pulsars and ULXs Roberto Soria (MSSL) Roberto Soria (MSSL) Thanks also to: Rosalba Perna (JILA-Boulder) Luigi Stella (INAF-Rome)
EGRET unidentified sources and gamma-ray pulsars I. CGRO mission and the instrument EGRET and it’s scientific goals II. Simple introduction of EGRET sources.
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Stephen C.-Y. Ng McGill University Jun 22, 2010HKU Fermi Workshop Neutron Star Zoo: radio pulsars, magnetars, RRATs, CCOs, and more Special thanks to Vicky.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
How Do Supermassive Black Holes Get Starved? Q. D. Wang, Z. Y. Li, S.-K. Tang University of Massachusetts B. Wakker University of Wisconsin.
The Ultra-luminous X-Ray Sources Near the Center of M82 NTHU 10/18/2007 Yi-Jung Yang.
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
The Milky Way and Other Galaxies Science A-36 12/4/2007.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Star Clusters and their stars Open clusters and globular clusters General characteristics of globular clusters Globular cluster stars in the H-R diagram.
The TeV view of the Galactic Centre R. Terrier APC.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Hot gas in galaxy pairs Olga Melnyk. It is known that the dark matter is concentrated in individual haloes of galaxies and is located in the volume of.
Radio Observations of X-ray Binaries : Solitary and Binary Millisecond Pulsars Jeong-Sook Kim 1 & Soon-Wook Kim 2  Department of Space Science and Astronomy.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
Collaborators: Michael Muno (UCLA) Frederick Baganoff (MIT) Yoshitomo Maeda (ISAS) Mark Morris (UCLA) George Chartas (Penn State) Divas Sanwal (Penn State)
Populations of accreting X-ray sources in galaxies
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Internal Irradiation of the Sgr B2 Molecular Cloud Casey Law Northwestern University, USA A reanalysis of archived X-ray and radio observations to understand.
The Radio Millisecond Pulsar PSR J : A Link to Low-Mass X-Ray Binaries Slavko Bogdanov.
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
Dec. 11, Review Neutron Stars(NSs) and SNR (Crab Nebula…) and then on to BHs… SN-II produce a NS for massive stars in approx. range 8-15Msun; and.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
The Milky Way Galaxy. Sky Maps in Different Bands.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Diffuse Emission and Unidentified Sources
Our Milky Way Galaxy. The Milky Way Almost everything we see in the night sky belongs to the Milky Way. We see most of the Milky Way as a faint band of.
Antimatter in our Galaxy unveiled by INTEGRAL
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
44 th Rencontres de Moriond 1 Blind Period Search gamma-ray pulsar by Fermi-LAT F. Giordano Dipartimento Interateneo di Fisica and INFN Sez. Bari for the.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
I.Death of Stars White Dwarfs Neutron Stars Black Holes II.Cycle of Birth and Death of Stars (borrowed in part from Ch. 14) Outline of Chapter 13 Death.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Cornelia C. Lang University of Iowa collaborators:
BH Astrophys. Ch4 Intermediate Mass Black Holes. Outline 1. The definition Possible candidates: 2. ULXs (Ultra-luminous X-ray sources) in star-forming.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Galaxies: Our Galaxy: the Milky Way. . The Structure of the Milky Way Galactic Plane Galactic Center The actual structure of our Milky Way is very hard.
Universe Tenth Edition
Gamma-Ray Emission from Pulsars
Formation of Redback and Black Widow Binary Millisecond Pulsars
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
Black Widow Pulsars(BWP): the Price of Promiscuity A. R. King, M. B. Davies and M. E. Beer, 2003,MNRAS,345,678 Fu Lei
The Milky Way Announcements Assigned reading: Chapter 15.1 Assigned reading: Chapter 15.1 Please, follow this final part of the course with great care.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
High Energy emission from the Galactic Center
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Millisecond pulsar population and related high energy phenomena 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing

Contents Introduction to millisecond pulsars (MSPs); High energy emissions in MSPs: observations versus theories; Millisecond pulsar population in the Galactic Center (GC) High energy contributions by MSPs toward the GC

Formation scenario of MSPs The spin equilibrium of neutron stars in low-mass X-ray binaries: What are MSPs (?): Observations (in radio and X-rays): compact objects with very fast spin, P<30 ms, i,e, pulsars, derived dipole magnetic fields < G; Theories (formation channel): old neutron stars in the low mass X-ray binaries (LMXB) are recycled to millisecond periods through accretions. Their current population likely consists of neutron stars in isolation (having evaporated their companions) and in LMXBs. - Very old (>10 8 yr) and fast-spin (P<30 ms) pulsars - Observed spin period (fastest up to now ): PSR B s PSR B s PSR J ad s (Terzan 5 )

P – P diagram (circles: binaries) What is the realistic formation channel of MSPs from normal neutron stars in LMXBs? No confident evidence for the transition-state sources before 2008 A number of mildly recycled binary pulsars possibly found. This channel confirmed by recent discovery: a radio MSP in a LMXB (Archibald et al. 2009): PSR J , P=1.69 ms.

Two populations of MSPs from the present observations:  Globular clusters  Galactic field 47Tuc Ter5 NGC6266 Two globular clusters in the bulge MSP distribution in the Galaxy

Soft X-ray emission properties of MSPs ( keV) X-ray emission detected from ~35 MSPs (including Galactic disk and globular clusters); Six of these have pulsed emission; For three (J , J , J ) the emission appears thermal dominated; Non-thermal emission dominated for J , B (in M28), B X-ray pulsar wind nebulae of MSPs are also detected recently ( PSR B , Stappers et al. 2003, Huang et al ) Two origins of PWNe: The interaction between the pulsar winds with the interstellar medium (ISM) – bow shock; interaction between pulsar winds and the stellar winds of donor stars – intrabinary shock.

X-ray behavior of MSPs in globular clusters (e.g. Tuc 47 ) Slope =1 Slope =0.2 Observations show very soft X-ray thermal spectra, kT ~ 0.1 keV Previously thought to have no X-ray tails extended to 10 keV. Only thermal emission Recent Chandra deep observations (Bogdanov et al …): Non-thermal emissions in some MSPs are also detected ! Origin: PWNe due to the intrabinary shock Gas density of ISM in globular clusters is very low. So PWNe only are obvious in binary systems. Most are still thermal dominated.

Hard X-rays to Gamma-rays of MSPs (20 keV – GeV) Three hard X-ray candidates GeV candidate for PSR J is reported by EGRET (Kuiper et al. 2004); confirmed by Fermi (Abdo et al. 2009b). Fermi is a new advanced gamma-ray telescope, launched mid-2008, discovered near 30 gamma-ray pulsars, including 8 MSPs. PSR J : P = 4.87 ms (Abdo et al. 2009a) >100 MeV keV 1.4 GHz Energy Cutoff :1- 2 GeV

Two populations of MSPs from the present observations:  Globular clusters  Galactic field Other populations (?): an unresolved millisecond pulsar population in the Galactic center (GC) region? The Galactic bugle is similar to globular clusters. Millisecond pulsar populations in the Galaxy

Some Motivations Chandra deep survey of the Galactic center (17 ’ X17 ’, by Muno et al. 2003) discovered 2000 weak unidentified X-ray sources (L>3x10 30 erg/s) Possible source populations:  cataclysmic variables  X-ray binaries  young stars  supernova ejecta  pulsars/pulsar wind nebulae

Sharp turnover round GeV similar to the EGRET spectrum of some pulsars, e.g. Vela, Geminga, and gamma-ray spectrum of MSPs (PSR J by Fermi)

Why millisecond pulsars in the GC? Normal Pulsars: Mass ratio of Muno’s field to the whole Galaxy: birth rate: per yr, active timescale: several Myr average birth velocity: 500 km/s (Arzoumanian, Chernoff, & Cordes 2002), few of them will stay inside the GC region (escape speed around 200 km/s) Less than 10 normal active pulsars stay in the Muno’s region. Thus, normal pulsars cannot be the main contributor to pulsar population in the GC. Millisecond Pulsars: MSPs can remain active nearly in the Hubble timescale after their birth (much longer lifetime than normal pulsars); The average birth velocity of MSPs is around 130 km/s (Lyne et al. 1998), so they could stay in the GC region throughout their life; A population analysis of Lyne et al. (1998) suggested around 3x10 5 MSPs in the whole Galaxy.; The binary population synthesis in the GC (Taam 2005) shows about 200 MSPs are produced through recycle scenario and stay in the region observed by Muno et al. (2003) if assume the present star-formation rate in the Galaxy.

 Possible high energy contributions by unresolved MSPs toward the Galactic Center The unidentified weak Chandra X-ray sources GeV spectrum from the GC observed by EGRET 511 keV annihilation line from the GC observed by INTEGRAL/SPI

Unidentified weak x-ray sources in the GC Contributions by a millisecond pulsar population (Cheng et al. 2006): non-thermal hard x-rays from synchrotron radiation from compact wind nebulae in MSPs For bow shocks: Lx ∝ n (p-2)/4 L sd p/2 (p>2, electron energy index) X-ray luminosity (2-10 keV) typically around erg/s Photon index in x-rays : Γ=(p+1)/2 or (p+2)/2 In general, 2<p<3, then Γ varies from (Muno et al. 2004)

G near Sgr A* (Wang, Lu & Gotthelf 2006) Wind nebulae formed through bow shocks of high speed MSPs (>100 km/s) may contribute to the elongated x-ray features (x-ray tails, pulsar wind nebula candidates) G (Wang, Lu & Lang 2002) Sgr A*

N=6000 Contribution of millisecond pulsar population in the Galactic center to the GeV spectrum (predicted from outer-gap models) Wang et al. 2005

INTEGRAL observations of 511 keV line: (Knodlseder et al. 2003, 2005; Churazov et al ) (Knodlseder et al. 2005)

morphology (with size of radius 6 o -8 o ): diffuse, bulge-like, weak/ no disk component ; high line luminosity and strong positronium continuum: line intensity implies the positron injection/ annihilation rate up to /s. The possible positron sources in the present theoretical models hypernovae/gamma-ray bursts in the GC (Casse et al. 2004; Bertone et al. 2006) light dark matter annihilation (mass <100 MeV, Boehm et al. 2004; Casse & Fayet 2005) winds of a millisecond pulsar population in the GC/bugle (Wang et al. 2006) Sgr A*: continuous capture of stars by supermassive black hole (Cheng et al. 2006), p-p interactions (Churazov et al. 2005) Properties of 511keV emission Previously, positrons in the Galaxy dominated by nucleosynthesis in supernovae; But supernovae should distribute along the Galacic disk; inconsistent with 511 keV morphology

Millisecond pulsars can be the continuous positron injection sources because of their long life time. Positrons produce through pair cascades near the surface of neutron stars, escaped from neutron stars as wind particles. For P=3ms, B=3x10 8 G, the positron injection rate for a MSP: ~ 5x10 37 e + /s (Wang et al. 2006) How many MSPs contribute to the annihilation line? Assume, N~ 6000x(6 o /1.5 o ) 2 ~10 5 Then the total positron injection rate from MSPs : 5x10 42 e + /s Significant contribution to positrons in the GC, produce observed 511 keV luminosity

Possible discrimination between positron source models Assume positrons diffuse in the magnetic field in the GC: The Larmor radius r L ~ E/eB The diffuse timescale is estimated: We change the form λ ~ (r L ct) 1/2 Take B ~ G in the GC (Uchida & Gusten 1995; LaRosa et al. 2005), the mean lifetime of positrons is about 10 6 yr, the characteristic diffusion scale of positrons is ~ 1 pc. (but observational resolution >> 1pc) The line intensity distribution may be similar to that of the positron sources.  Supernovae, hypernovae/ GRBs: 511 keV emission may follow the distribution of molecular clouds in the GC;  MSP population in the GC: line emission may follow the mass (e.g. stars) distribution of the GC;  Light dark matter annihilation: line emission may follow the dark matter density profile.

Summary & Perspective  Three possible MSP populations: globular clusters; Galactic field; Galactic Center (GC). The population of MSPs in the GC is an assumption, but it seems reasonable.  MSP population can contribute to the weak unidentified Chandra sources in the GC, specially to the elongated x-ray features.  Unresolved MSP population can significantly contribute to the gamma-ray spectrum detected by EGRET in the GC; These MSPs could be detected or resolved by Fermi; GeV gamma-ray emission from total MSPs in globular clusters detected by Fermi (Tuc 47 has been a GeV source).  MSPs in the GC/bulge could be the potential positron sources.  Because the electron density in the direction of the GC is very high, it is difficult to detect MSPs using the present radio telescopes. X-ray or Gamma-ray studies in the GC would probably be a feasible method to find MSP (candidates).