Solar neutrinos Recent results Daniel Vignaud (APC Paris) Neutrinos at the forefront of particle physics and astrophysics 23 October 2012.

Slides:



Advertisements
Similar presentations
Standard Solar Model Calculation of Neutrino Fluxes Aldo Serenelli Institute for Advanced Study NOW 2006 Conca Specchiulla 11-Sept-2006.
Advertisements

The SNO+ Experiment: Overview and Status
Riunione Settembre 2007 Gruppo 2 Inizio presa dati 2007: Auger, Borexino, Agile, Pamela Rivelatore on 2008: Gerda, Icarus, Opera,Warp, Glast, Antares,
Neutrino oscillations/mixing
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005.
Recent results from Borexino
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Stockholm, May 2-6, 2006 SNOW Sub-MeV solar neutrinos: experimental techniques and backgrounds Aldo Ianni Gran Sasso Laboratory, INFN.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Chapter three Sun’s model Major contributions in building the Sun’s model have been made by Eddington (1930’s), Hoyle (1950’s),Bahcall, Clayton (1980’s)
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
李玉峰 中科院高能所 JUNO中微子天文和天体物理学研讨会
Solar Neutrinos Dr Robert Smith Astronomy Centre University of Sussex.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Solar Neutrino Experiments A Review The CAP'09 Congress Moncton, 7-10 June, 2009 Alain Bellerive On behalf of the SNO Collaboration Carleton University,
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
G. Testera (INFN Genoa- Italy ) on behalf of the Borexino collaboration Low energy solar neutrino signals in Borexino Kurchatov Inst. (Russia) Dubna JINR.
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
Kopylov A.V. Erice School/Workshop 2009 on Neutrinos in Cosmology, in Astro, in Particle and in Nuclear Physics in Erice/Trapani/Sicily/Italy on September.
Solar neutrino results from Super-Kamiokande Satoru Yamada for the Super-Kamiokande collaboration Institute of cosmic ray research, University of Tokyo.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
SAGE: status and future SAGE: V.N. Gavrin Institute for Nuclear Research of the Russian Academy of Sciences, Moscow.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrino Results from SNO
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Review of experimental results on atmospheric neutrinos Introduction Super-Kamiokande MACRO Soudan 2 Summary Univ. of Tokyo, Kamioka Observatory.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
The first year of Borexino data Davide Franco on behalf of the Borexino Collaboration Milano University & INFN Heavy Quarks and Leptons June 5-9, 2008.
Aldo Ianni for the Borexino collaboration 12th International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Zurich, 7 th Nov 2011.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Solar Neutrinos on the beginning of 2017
Solar neutrino detection in Borexino
Solar Neutrino Problem
“Solar” Neutrino Oscillations (Dm2, q12)
Solar neutrinos: form their production to their detection
Status of Neutron flux Analysis in KIMS experiment
Sudbury Neutrino Observatory
Davide Franco for the Borexino Collaboration Milano University & INFN
Low Energy Neutrino Astrophysics
Presentation transcript:

Solar neutrinos Recent results Daniel Vignaud (APC Paris) Neutrinos at the forefront of particle physics and astrophysics 23 October 2012

1.Solar neutrinos, witnesses of the core of the Sun 2.Archaeology ( ) : the solar neutrino problem 3.Towards solar neutrino spectroscopy 4.Solar neutrinos and particle physics 5.Is there any future ? Solar neutrinos : Recent results

1.Solar neutrinos, witnesses of the core of the Sun 2.Archaeology ( ) : the solar neutrino problem 3.Towards solar neutrino spectroscopy 4.Solar neutrinos and particle physics 5.Is there any future ? Solar neutrinos : Recent results

température T (10 6 K) The Sun  Composition : 73% hydrogen (H) 25% helium (He) 2% other elements Central temperature: degrees p + p  d + e + + e core radiative zone convective zone Energy production in the Sun: cycles of nuclear reactions Energy balance : 4 protons + 2 electrons  helium neutrinos W

Nuclear reactions in the Sun p + p  2 H + e + + e B pp 3 He + 3 He  4 He + 2p 3 He + 4 He  7 Be +  2 H + p  3 He +  100% 85% 15% 7 Be + e -  7 Li + e 7 Li + p  4 He + 4 He 15% Be 7 Be + p  8 B +  8 B  8 Be + e + + e 8 Be  4 He + 4 He 0,02% B B

Nuclear reactions in the Sun p + p  2 H + e + + e 3 He + 3 He  4 He + 2p 3 He + 4 He  7 Be +  7 Be + e -  7 Li + e 7 Li + p  4 He + 4 He 7 Be + p  8 B +  8 B  8 Be + e + + e 8 Be  4 He + 4 He 2 H + p  3 He +  100% 85% 15% 0,02% 15% B B pp Be p + e - + p  2 H + e 0,4% pep 3 He + p  4 He + e + + e hep

Nuclear reactions in the Sun CNO cycle 12 C + p  13 N +  13 N  13 C + e + + e 13 C + p  14 N +  14 N + p  15 O +  15 O  15 N + e + + e 15 N + p  12 C + 4 He B N O 12 C : catalyst

Energy production in stars cycle CNO cycle pp Temperature of the star (10 6 K) Competition between the pp chain and the CNO cycle as a function of the stellar temperature. For the Sun, the pp chain is still dominant.

pp 8B8B pep 7 Be Neutrino energy (MeV) Flux Spectres continus : cm -2 s -1 MeV -1 Raies monoénergétiques : cm -2 s ,1 Energy spectrum of solar neutrinos hep SuperK, SNO Chlorine Borexino Gallium LENS TPC 13 N 15 O

 J.N.Bahcall, M.Pinsonneault, S.Basu, astro-ph/ , Ap. J. 555 (2001) 990 A.M. Serenelli, W.C. Haxton, C. Pena-Garay, arXiv:  S.Turck-Chièze et al., Ap. J. Lett. 555 (2001) L69 S. Turck-Chièze and S. Couvidat, Rep. Prog. Phys. 74 (2011) SSM and Seismic model SNO Predictions of the solar models Z/X Best determination of the Sun metallicity, but disagreement with héliosismology 40 years of solar modeling Flux (cm -2 s -1 ) GS98 (High met.) AGS09 (Low met.) Seismic (AGS09) Error (~) pp (10 10 ) % pep (10 8 ) % 7 Be (10 9 ) % 8 B (10 6 ) % 13 N (10 8 ) % 15 O (10 8 ) % Radioch. (SNU) Chlorine % Gallium %

1.Solar neutrinos, witnesses of the core of the Sun 2.Archaeology ( ) : the solar neutrino problem 3.Towards solar neutrino spectroscopy 4.Solar neutrinos and particle physics 5.Is there any future ? Solar neutrinos : Recent results

1970 : the detector Homestake mine (South Dakota) 600 tons of C 2 Cl 4 e + 37 Cl  37 Ar + e - 37 Cl (T 1/2 =35 d) The « pionneering » chlorine experiment  Radiochemical  Sensitive to 7 Be and 8 B B.T.Cleveland et al., Ap. J. 496 (1998) 505 Result : 2.56 ± 0.20 SNU 1/3 of solar models ( SNU)

30.3 tons of gallium in aqueous solution (GaCl 3 + HCl) GALLEX / GNO : radiochemical detection of primordial solar e + 71 Ga  71 Ge + e - threshold = 233 keV sensitive to all W.Hampel et al., Phys. Lett. B447 (1999) 127 M.Altmann et al., Phys. Lett. B616 (2005) 174 F.Kaether et al., Phys. Lett. B685 (2010) 47 GALLEX : 77.5 ± 7.8 SNU (73.4 ± 7.2 SNU) GNO : 62.9 ± 6.0 SNU GALLEX/GNO : 69.3 ± 5.5 SNU (67.6 ± 5.1 SNU) Solar models : SNU ~60% of solar models SAGE Baksan (Russie) 50 tons Ga metal Similar results

electron  tons of water PMTs e + e -  e + e - SuperKamiokande cos  E > 5 MeV sensitive to 8 B S. Fukuda et al. : hep-ex/ Flux measured for 8 B : (2.32 ± 0.03 (stat.) ± 0.08 (syst.)) 10 6 cm -2 s -1 45% of solar models (5 ±1) 10 6 cm -2 s -1

Solar neutrinos: results and predictions chlore chlorine SuperK gallium Spring 2001

(CC) (NC) (elastic sc.)  1000 tons D 2 O (target)  7000 tons H 2 0 (shield)  ’’ PM for Cerenkov light  Canada-USA-GB Collaboration Sudbury Neutrino Observatory (SNO) n detection E > 4-5 MeV sensitive to 8 B cos  June 2001

CC : 1.76 ± 0.11 ES : 2.39 ± 0.27 ES(SK) : 2.32 ± 0.08 No oscillation : Total flux = ES = CC = NC Oscillation Total flux = CC + (ES-CC)*6 = NC NC : 5.09 ± 0.63 e pp d e W ee e e, W,Z n (p) d Z Summary of SNO results (2006) [units : 10 6 cm -2 s -1 ] Sun : 5 ± 1 NC : 4.94 ± 0.43 CC : 1.68 ± 0.10 ES : 2.35 ± 0.27 Salt phase arXiv:

Experimental results after SNO

The problem is solved  Nuclear reactions in the Sun produce only e  Until SNO, solar neutrino detectors were sensitive only (mainly) to e SNO has shown that : a)solar  e have been (partially) transformed into  or  and the oscillation mechanism explains the observed deficit b) the SSM is (at first order) right !

1.Solar neutrinos, witnesses of the core of the Sun 2.Archaeology ( ) : the solar neutrino problem 3.Towards solar neutrino spectroscopy 4.Solar neutrinos and particle physics 5.Is there any future ? Solar neutrinos : Recent results

2. SuperK, new results on 8 B 1.Borexino : 7 Be, pep, CNO, 8 B 3. SNO, final results on 8 B

Elastic diffusion  e   e Target n° 1 : 7 Be neutrinos Proposal : 60 events / day (no oscillation) (oscillation) Gran Sasso (Italy) Borexino (2007-…) Bq/kg 1 verre d’eau : 10 Bq Objectif : Gagner 10 ordres de grandeur Bq/kg 1 glass of water: 10 Bq Purpose: Improve by 10 orders of mag. 50 times more light than Cherenkov  No directionality M No discrimination e - Sun and e - radioactivity Scintillator

 Borexino is underground the Gran Sasso mountain (3800 m.w.e.) Target: 300 tons of liquid scintillator in a nylon vessel (4,25 m radius) 1 er shielding: 900 tons of liquid scintillator 2200 photomultipliers looking at the center 2 nd shielding: 2100 tons of water 208 PMTs to sign muons (veto) 2 nd nylon vessel (against radon)

visible energy (MeV) events / (day x 100 tons) Expected signal in Borexino (SSM+ oscillation [LMA] ) pp Be B CNO total 14 C pep pep window Be window e  e

K T=1, yr 89%  11% c.e. E max = 1,311 MeV 85 Kr T=10,7 yr ~100%  E max = 0,687 MeV E (MeV) 14 C T 1/2 =5730 yr 100%  E max = 156 keV 210 Po T 1/2 =138 d 100%  E a = 5,3 MeV Quenching f. in PC: 13.4 E vis = 395 keV Many radioactive enemies ! The expected signal is here 11 C Cosmogenic (  ) T=20 min 100%  E max = 0.96 MeV 1.02<E vis <1.98 MeV Fortunately, Borexino could achieve exceptional low radiopurity of the scintillator and of all the components of the detector

Towards 7 Be solar  All data: 740 live days Expected 7 Be signal

Remove  +  followers (2 ms) All data: 740 live days Towards 7 Be solar 

Expected 7 Be signal Fiducial Volume Fiducial mass = 75.6 tonnes R < 3.02m |z| < 1.67m Remove  +  followers (2 ms) 210 Po  All data: 740 live days Towards 7 Be solar 

Expected 7 Be signal Statistically subtract  ’s  discrimination by pulse shape analysis using the Gatti parameter] Remove  +  followers (2 ms) All data: 740 live days Fiducial Volume Towards 7 Be solar 

2 types of fit : 1)No subtraction of  from 210 Po – Energy from number of photons 2)Subtraction of  (pulse shape method by Gatti) - Energy from total charge Events / day / 100 tons : 7 Be: 46.0 ± 1.5 ± Kr: 31.2 ± 1.7 ± Bi: 41 ± 1.5 ± C : 28.5 ± 0.2 ± 0.7 Towards 7 Be solar 

46.0 ± 1.5 (stat) ± 1.5 (syst) ev./day /100 tons for 7 Be (862 keV)   arXiv: Phys. Rev. Lett. 107, (2011) Systematic errors  ( 7 Be-862 keV) = (2.78 ± 0.13) 10 9 cm -2 s -1 SSM-High Met = (4.48 ± 0.31) 10 9 cm -2 s -1 Ratio = 0.62 ± 0.05 P ee = 0.51 ± 0.07 [  ( e )=4.5  (    )] Towards 7 Be solar 

Towards pep and CNO  85 Kr 7 Be v 210 Po 210 Bi 11 C : dominant background Cosmogenic, t 1/2 = 29 min Borexino muon rate = 4200/day Can’t veto after every muon! pep v CNO v External Backgrounds

Cosmic μ The 125 muon-neutron coincidences/day can be vetoed without excessive loss of live time. 11 C + n Most 11 C (t 1/2 =29 min) produced via  + 12 C 11 C + n  11 C 11 Be + e + + e n capture (255  s) Most 11 C (t 1/2 =29 min) produced via  + 12 C 11 C + n  11 C 11 Be + e + + e Delayed neutron capture (2.2 MeV  signal) identifies when and where 11 C was produced  geometrical cut Towards pep and CNO 

Remove 91% of 11 C with a livetime sacrifice of 51.5%. I. Three-fold coincidence : space and time veto after coinc. between  and cosmogenic n Towards pep and CNO 

II. Pulse shape discrimination between e + and e - (50% of e + give orthopositronium (t 1/2 =3 ns)) Towards pep and CNO 

III. Multidimensional fit with all the ingredients + * arXiv: Phys. Rev. Lett. 108 (2012) pep flux 3.1 ± 0.6 ± 0.3 counts/(day.100 ton)  (pep) = 1.6 ± cm -2 s -1  (SSM) = 1.45 ± cm -2 s -1 CNO flux < 7.9 counts/(day.100 ton)  (CNO) < cm -2 s -1  (SSM) = 5.2 (3.7) 10 8 cm -2 s -1 Towards pep and CNO 

Towards 8 B  Expected rate (0-14 MeV) : 0.49±0.05 c/d/100 tonnes > 5 MeV (like SK and SNO): 0.14±0.01 c/d/100 tons Contamination from 2.6 MeV  ( 208 Tl)  E>2.8 MeV: 0.26±0.03 c/d/100 tons  SSM = 5.58 ± cm -2 s -1 (High Metallicity 2011) Counting rate: 30 c/d/100 ton Spectrum ( MeV) Borexino 246 d Ratio S/B < 1/100!!!

 Muon energy spectrum  All  are cut (residual rate: <10 -3 c/d)  Neutron cut: 2 ms veto after each , to reject induced n (mean capture time ~250  s) (residual n rate: ~10 -4 c/d)  Fiducial volume (to eliminate surface contamination by 220 Rn and 222 Rn)  Cosmogenic cuts (to eliminate short-live radioactive induced like 12 B, 8 Li, 9 Li, 8 He, 6 He,…)  Some more cuts… 10 C, 214 Bi, 208 Tl. Towards 8 B 

> 5 MeV > 7 MeV > 5 MeV > 5.5 MeV > 6 MeV > 7 MeV> 2.8 MeV *Threshold is defined at 100% trigger efficiency Systematic errors: 3.8% (fiducial mass) 3.5% (energy threshold) d 75±13 events above 3 MeV (46±8 events above 5 MeV)  ( 8 B) = 0.22 ± 0.04 ± 0.01 cpd/100 t (  ( 8 B) = 0.13 ± 0.02 ± 0.01 cpd/100 t)  ( 8 B) = 2.4 ± 0.4 ± cm -2 s -1 (  ( 8 B) = 2.7 ± 0.4 ± cm -2 s -1 )  (SSM) High Met = 5.58 ± cm -2 s -1 arXiv: Phys. Rev. D82 (2010) Towards 8 B 

SuperKamiokande : what’s new ? K. Takeuchi : Physun 2012 I.

SuperKamiokande : what’s new ? K. Takeuchi : Physun 2012 II.

Y. Takeuchi, Physun 2012 SuperKamiokande : what’s new ? III. 8 B Energy spectrum (all)

SNO : what’s new ? I- Low Energy Threshold Phys. Rev. C81 (2010) I- LETA (Low Energy Threshold Analysis) : T eff > 3.5 MeV Low energy spectrum still consistent with no distortion

SNO : what’s new ? II- 3 phase analysis Total uncertainty : 3.6% N. Fiuza de Barros, NOW 2012 Combine data taking phases into a single analysis (to avoid double counting of common systematics)

SNO : what’s new ? III- hep neutrinos N. Fiuza de Barros, NOW 2012 hep solar neutrinos 1000 times less than 8B !  hep) SSM = (8.0 ± 1.2) 10 3 cm -2 s days of SNO data  hep) < cm -2 s -1 [preliminary]  hep) SK < cm -2 s -1 ]

pp 8B8B 7 Be pep Neutrino energy (MeV) Flux Spectres continus : cm -2 s -1 MeV -1 Raies monoénergétiques : cm -2 s ,1 Towards spectroscopy of solar neutrinos hep 13 N 15 O Borexino limit SNO limit Borexino BX, SK, SNO lowering the threshold

1.Solar neutrinos, witnesses of the core of the Sun 2.Archaeology ( ) : the solar neutrino problem 3.Towards solar neutrino spectroscopy 4.Solar neutrinos and particle physics 5.Is there any future ? Solar neutrinos : Recent results

Solar neutrinos and oscillation parameters (spring 2001) Bahcall, Krastev, Smirnov, hep-ph/ SMA LMA LOW  m 2 (eV 2 ) tan 2  VAC  m 2 12  12 SMA LMA LOW  m 2 (eV 2 ) tan 2  VAC Thanks to MSW effect

Solar neutrinos and oscillation parameters (June 2001) Bahcall, Krastev, Smirnov, hep-ph/ SMA LMA LOW  m 2 (eV 2 ) tan 2  VAC  m 2 12  12 SMA LMA LOW  m 2 (eV 2 ) tan 2  VAC

Solar neutrinos and oscillation parameters (precision) sin 2 (2  12 ) = 0.87  m 2 = eV 2 Phys. Rev. Lett. 100 (2008) Sun KamLAND (2008)

A. Palazzo, Physun 2012 Solar neutrinos and oscillation parameters (precision)

E (MeV) P( e e ) sin 2 (2  12 ) = 0.87  m 2 = eV 2 pp - all solar 7 Be - Borexino pep – Borexino 8 B – SNO (LETA) + Borexino 8 B – SNO + SK vacuum effect sin 2 2  MSW effect sin 2  12 =0.314 MSW effect : the Sun and LMA Needs more precision in the transition region

Possible regeneration of solar v e if they cross the Earth before interacting (Cribier et al., 1986). Solar before Borexino ModelPredicted A nd (862 keV) LMA<0.001 LOW MaVaN~0.20 Day-night asymmetry of 7 Be e P( e  e ) 0 1 sin 2  E/  m2

Solar WITH Borexino LOW solution excluded at >99.73% C.L. arXiv: Phys. Lett. B707 (2012) 22 Low solution Day-night asymmetry of 7 Be e A dn (862 keV): ± stat ±0.007 sys

Y. Takeuchi, Physun 2012 D/N in SuperKamiokande

1.Solar neutrinos, witnesses of the core of the Sun 2.Archaeology ( ) : the solar neutrino problem 3.Towards solar neutrino spectroscopy 4.Solar neutrinos and particle physics 5.Is there any future ? Solar neutrinos : Recent results ?

Future for solar in Borexino  measure CNO  (if suppression of 210 Bi) ?  measure pp  ? Many astrophysical implications : - First probe of energy produced in high mass stars - Help to solve the metallicity problem - Check homogeneous young Sun (e.g. accretion during formation of planetary system),…

A. Mc Donald, Neutrino 2012 Future Solar experiments (beyond Borexino)

Liquid scintillator in the old SNO sphere G. Orebi Gann, Physun 2012

L. Oberauer, Physun 2012 M. Wurm et al. / Astrop. Phys. 35 (2012) 685  Very high statistics in 7 Be (allows to search for small flux fluctuations)  CNO and pep possible,if 210 Bi background < 10 to 100 (Borexino)  8 B spectrum from 3 MeV (elastic scattering)  8 B spectrum via 13 C charged current reaction from 4 MeV ( ∼ 425 counts/year) LENA (Low Energy Neutrino Astronomy) > 2020 ?

 Important progresses in solar neutrino spectroscopy, thanks to Borexino : 7 Be, pep, limit on CNO, low threshold for 8 B.  SuperKamiokande and SNO provide updated results on 8 B.  The experiments fix fluxes for solar models  The oscillation solution MSW-LMA has become more precise, thanks to flux, spectrum and day- night effect (and KamLAND).  Future : CNO ? pp ? Conclusion

Solar neutrinos are at the forefront of particle physics and astrophysics Solar neutrinos   are at the forefront of particle physics and astrophysics (Lugdunum, -52 BC)     

1-D binned likelihood fits in energy 7 Be, 210 Po, 85 Kr, 11 C, 210 Bi weights floated pp, pep, 8 B, and CNO fixed to SSM fluxes + LMA 222 Rn, 218 Po, and 214 Pb weights constrained by 214 Bi- 214 Po co-incidence Towards 7 Be solar 

Particles with higher ionization density produce more slow light  /  pulse shape discrimination Separate α / β using the “Gatti Parameter” Fit each energy bin with the sum of two Gaussians

Towards 8 B 

Données solaires + KamLAND 2005 : précision sur  m 2 12 Solar neutrinos and oscillation parameters (precision) M. Maltoni, Physun 2012

Survival probabilities with MSW effect How the solar neutrino spectrum is modified by the MSW effect ?