Principles and kinetics of drug stability (PHR 416)

Slides:



Advertisements
Similar presentations
CHEMICAL KINETICS CHAPTER 17, Kinetics Fall 2009, CHEM
Advertisements

KINETICS.
AP CHEMISTRY CHAPTER 12 KINETICS
Chapter 12 Chemical Kinetics
AP Chapter 14.  Chemical kinetics is the area of chemistry that involves the rates or speeds of chemical reactions.  The more collisions there are between.
Reaction Rates (Chapter 13)
Chapter 14 Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Lecture Presentation © 2012 Pearson Education, Inc.
Chemical Kinetics Chapter
Unit two: Chemical Kinetics Introduction to Chemical Kinetics The rate at which a chemical reaction occurs is often very important to us. A common.
Overview of Ch Properties of Solutions Chapter 11.
THE RATES OF REACTIONS Chapter 13. Reaction Rate The reaction rate is defined as the change in concentration of a species with time. Consider the reaction.
Rate Laws Example: Determine the rate law for the following reaction given the data below. H 2 O 2 (aq) + 3 I - (aq) + 2H + (aq)  I 3 - (aq) + H 2 O (l)
1 Kinetics Chapter The study of rxn rates Rxn rate =  concentration/  time Rxn rate =  concentration/  time Example: Example: 2N 2 O 5  4NO.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chapter 14 Chemical Kinetics
Chapter 12 Chemical Kinetics. Chapter 12 Table of Contents Copyright © Cengage Learning. All rights reserved Reaction Rates 12.2 Rate Laws: An.
DRUG STABILITY & KINETICS
It is clear from the first two experiments that when the concentration of O 3 was doubled, the rate was doubled as well. Therefore, the.
Chapter 14 Chemical Kinetics
Chemical Kinetics: Rates and Mechanisms of Chemical Reactions General Chemistry: An Integrated Approach Hill, Petrucci, 4 th Edition Mark P. Heitz State.
Ch 15 Rates of Chemical Reactions Chemical Kinetics is a study of the rates of chemical reactions. Part 1 macroscopic level what does reaction rate mean?
CHEMICAL KINETICS The branch of chemistry which deals with the rate of chemical reactions and the factors which influence the rate of reaction is called.
Chemical Kinetics Chapter 14 Chemical Kinetics. Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed.
Chapter 12 Chemical Kinetics. Chapter 12 Table of Contents Copyright © Cengage Learning. All rights reserved Reaction Rates 12.2 Rate Laws: An.
Chemical Kinetics. Kinetics In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur,
Chapter 14.  Physical state of reactants:  Reactants must come in contact with one another in order for a reaction to occur.  Concentration of reactants:
Chapter 14 Kinetics Chapter 10 provided an introduction to kinetics and equilibrium. In this chapter we expand the quantitative treatment of chemical kinetics.
Chapter 12 Chemical Kinetics.
Chemical Kinetics 1 Chemical kinetics Plan 1. The subject of a chemical kinetics. 2. Classification of chemical reactions. 3. Determination methods of.
C h a p t e r 12 Chemical Kinetics. Reaction Rates01 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant.
Chemistry 132 NT More can be accomplished with the phrase “I must do something” than with the phrase “something should be done”. Anon.
1 Chemical Kinetics The area of chemistry that concerns reaction rates. The area of chemistry that concerns reaction rates.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chemical Kinetics Two Types of Rate Laws 1.Differential- Data table contains RATE AND CONCENTRATION DATA. Uses “table logic” or algebra to find the order.
Rate Law & Reaction Order 02
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
1. Unit 7 Test = ___% 2. I studied by … 3. Next time I will study by… 4. We will reevaluate our goals momentarily… Day period 3.
1 Chemical Kinetics Chapter Chemical Kinetics Kinetics is the study of how fast chemical reactions occur and how they occur. There are 4 important.
Chapter 14 Chemical Kinetics Chemical Kinetics CH 141.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
AP CHEMISTRY CHAPTER 12 KINETICS. 2 Chemical Kinetics Thermodynamics tells us if a reaction can occur Kinetics tells us how quickly the reaction occurs.
UNIT 3 CHEMICAL EQUILIBRIUM. Introduction to Chemical Equilibrium  Focus has always been placed upon chemical reactions which are proceeding in one direction.
Chapter 14 – Chemical Kinetics The rate of a chemical reaction is the speed at which products or formed and reactants broken down. There factors that affect.
BLB 11 th Chapter Will the reaction occur? Ch. 5, How fast will the reaction occur? Ch How far will the reaction proceed? Ch. 15.
Chemical Kinetics Chapter 14 Chemical Kinetics John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The.
The Rate of Chemical Reactions – The Rate Law.
Expresses the reactant concentrations as a function of time. aA → products Kinetics are first order in [A], and the rate law is Rate = k[A] Integrated.
KINETICS. Studies the rate at which a chemical process occurs. a A + b B c C + d D v = - dc/dt = k [A]x [B]y Besides information about the speed at which.
Chemical Kinetics Chapter 14. Reminders Assignment 1 due today (end of class) Assignment 2 up on ACME, due Jan. 29 (in class) Assignment 3 will be up.
The Integrated Rate Law Section The Integrated Rate Law Integrated Rate Law-A relationship between the the concentrations the reactants and time.
Chemical Kinetics Chemical Kinetics or Rates of reaction.
“K” Chemistry (part 1 of 3) Chapter 13: Reaction Rates and Kinetics.
Kinetics Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.
Chapter 14: Kinetics Wasilla High School
Kinetics. Reaction Rate  Reaction rate is the rate at which reactants disappear and products appear in a chemical reaction.  This can be expressed as.
Chapter 5 Rates of Chemical Reaction. 5-1 Rates and Mechanisms of Chemical Reactions 5-2 Theories of Reaction Rate 5-3 Reaction Rates and Concentrations.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
Dr. Paul Charlesworth Michigan Technological University Dr. Paul Charlesworth Michigan Technological University C h a p t e rC h a p t e r C h a p t e.
16-1 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS.
Chemical Kinetics. The branch of Physical chemistry which deals with the rate of reactions is called chemical kinetics. The study of chemical kinetics.
Notes 14-1 Obj 14.1, Factors That Affect Reaction Rates A.) Studies the rate at which a chemical process occurs. B.) Besides information about.
Kinetics By Pharmacist Muhanad S. Al Ani. Rate and orders of reactions: The rate, velocity, or speed of a reaction is given by the expression dc/dt dc:
AP CHEMISTRY Chapter 14 Chemical Kinetics Chemical Kinetics Study of how rapidly a reaction will occur. In addition to speed of reaction, kinetics.
Chapter 13 Chemical Kinetics. Kinetics In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which.
Chemistry.
Chemical Kinetics.
Kinetics.
Kinetics - Reaction Rates
Chemical Kinetics The Second Order Integrated Rate Equation
Kinetics Part III: Integrated Rate Laws
Presentation transcript:

Principles and kinetics of drug stability (PHR 416) Nahla S Barakat, PhD Professor of Pharmaceutics PHR 416 18/07/1438

Molecularity Molecularity describes the mechanisms or the pathways of reaction (i.e the number of molecules, atoms or ions entering the reaction). Reactions may be: complex (multistep) reaction in which the reaction takes place in a series of steps the product of each step cannot be isolated and serves as starting material for the next step. Elementary reaction (single step reaction) The order is identical to molecularity in elementary reaction as it gives the number of molecules entering the reaction. PHR 416 18/07/1438

Half Life One way to gauge the speed of a reaction is to specify the amount of time required for a reactant concentration to be reduced to half its original value. The faster the reaction, the less time required for the concentration to be cut in half. We use the symbol t½ to refer to the half life. The ½ serves as a label here. The concentration at the half life time (t½) is half the starting concentration. PHR 416 18/07/1438

Half life For the zero order, start with [A]t = [A]0 – k t and substitute t = t½ and [A]t = ½[A]0 to get ½[A]0 = [A]0 – k t½ ½[A]0 - [A]0 = -k t½ -½[A] 0 = -k t½ Dividing both sides of this equation by -k gives t ½ = 1/2 [A]0 [A]0 k = 2 k Since the initial reactant concentration ([A]0) is in the numerator, the half life will increase with the initial concentration. The greater the concentration of the reactant, the longer it will take for half of it to be consumed PHR 416 18/07/1438

A larger rate constant means a faster reaction. The half life equation also shows that the half life decreases with the rate constant. The rate constant is in the denominator, so the larger it is, the smaller (i.e., shorter) the half life will be. A larger rate constant means a faster reaction. The faster the reaction, the more quickly the reactant is used up, and therefore, the more quickly half of it is used up. PHR 416 18/07/1438

Is the time required for 10% of the material to disappear; Shelf life (t90) Is the time required for 10% of the material to disappear; it is the time at which A has d decreased to 90% of its original concentration (i.e., 0.9A). PHR 416 18/07/1438

Example A prescription of liquid aspirin containing 325mg/5ml (6.5 g/100 ml) is called for. The solubility of aspirin at 25 oC is 0.33g/100 ml; so the preparation will be suspension. The first order rate constant for aspirin degradation in this solution is 4.5 x 10-6 sec-1. Calculate the zero order rate constant. Calculate the shelf life of the suspension k0 = K[A] = (4.5 x 10-6 sec-1) x (0.33g/100 ml) K0 = 1.5 x 10-6 g/100ml. sec-1. PHR 416 18/07/1438

the first order reaction the first order reaction. We start with the integrated rate law ln [A]t = ln [A]0 - kt and substitute t = t½ and [A]t = ½[A]0 to get ln (½[A]0) = ln [A]0 – k t½ ln ½ + ln [A]0 = ln [A]0 – k t½ ln ½ = -k t½ Another way to think of ½ is 2-1. Our equation can now be written : ln 2-1 = -k t½ -ln 2 = -k t½ Now, dividing both sides by k, we write the equation, so that t ½ appears on the left side, we have t ½ = ln 2 k PHR 416 18/07/1438

It is an interesting result in that the initial reactant concentration, [A]0 does not appear. This means that the half life of a first order reaction is independent of the starting concentration. The rate constant again appears in the denominator, just as it did in the zero order reaction. Therefore, once again, higher rate constant will give a shorter half life. A higher rate constant means a faster reaction, and if the reaction is faster, it should not take as long to consume half of the reactant. PHR 416 18/07/1438

Shelf life (t 90) Is the time required for 10% of the material to disappear; it is the time at which A has decreased to 90% of its original concentration (i.e., 0.9A). t 0.9 = 0.105 k1 PHR 416 18/07/1438

Example Consider the first order reaction A - - products which has a rate constant, k = 2.95 X 10-3 s-1. What percent of A remains after 150 s ? Solution: For a first order reaction, the integrated rate law is: [A] t = [A]0 e –kt The fraction remaining is the concentration divided by the initial concentration or [A]/[A]0 thus fraction remaining = exp{-(2.95 X 10-3 s-1) (150 s)} = 0.642 or 64.2% PHR 416 18/07/1438

N2O5 decomposes according to 1st order kinetics, and 10% of it decomposed in 30 s. Estimate k, t½ and percent decomposed in 500 s. Solution: Assume [A]o = [N2O5]o = 1.0, then [A] = 0.9 at t = 30 s or apply [A]t = [A] 0 e– k t 0.9 = 1.0 e – k t ln 0.9 = ln 1.0 – k 30 s – 0.1054 = 0 – k * 30 k = 0.00351 s – 1 t½ = 0.693 / k = 197 s [A] = 1.0 e – 0.00351*500 = 0.173 Percent decomposed: 1.0 – 0.173 = 0.827 or 82.7 % After 2 t½ (2*197=394 s), [A] = (½)2 =¼, 75% decomposed. After 3 t½ (3*197=591 s), [A] = (½)3 =1/8, 87.5% decomposed. PHR 416 4/14/2017

Assignment 3. The decomposition of A is first order, and [A] is monitored. The following data are recorded: t , min 0 2 4 8 [A], [M] 0.100 0.0905 0.0819 0.0670 Calculate k (What is the rate constant? k = 0.0499) Calculate the half life (What is the half life? Half life = 13.89) Calculate [A] when t = 5 min. (What is the concentration when t = 5 min?) Calculate t when [A] = 0.0100 M (Estimate the time required for 90% of A to decompose.) PHR 416 4/14/2017

Now let's consider the reaction that is second order in a single reactant. We take the integrated rate law multiplying the numerator and denominator by the same number (both get multiplied by 2), PHR 416 18/07/1438

Dividing both sides by k (or multiplying by 1/k and we writing the equation so that t½ appears on the left As usual, the rate constant is in the denominator, meaning that the larger the rate constant is, the shorter the half life will be. As we have seen, this is because a larger rate constant means a faster reaction, and the faster the reaction, and less time it should take to consume half of the reactant. PHR 416 18/07/1438

Shelf life (t 90) Is the time required for 10% of the material to disappear; it is the time at which A has d decreased to 90% of its original concentration (i.e., 0.9A). t 0.9 = 0.11 / A0 k PHR 416 18/07/1438

In summary then, the following features pertain to half lives: Half life always decreases as the rate constant increases. This is true regardless of the reaction order. • For zero order reactions, the greater the reactant concentration, the longer the half life. • For first order reactions, the half life is independent of reactant concentration • For second order reactions, the greater the reactant concentration, the shorter the half life. PHR 416 18/07/1438

Example: The decomposition of sulfuryl chloride, SO2Cl2 is described by the following equations: SO2Cl2(g) ----------> SO2(g) + Cl2(g) Rate = k [SO2Cl2] At 320 oC, the rate constant k has the value 2.20 x 10-5 s-1. If the reaction begins with SO2Cl2 at an initial concentration of 1.00 x 10-4 mol L-1, how long will it take for the SO2Cl2 concentration to be reduced to 2.50 x 10-5 mol L-1? PHR 416 18/07/1438

Since the half life of a first order reaction does not depend on concentration, the second half life will be the same duration as the first. In fact, every half life in a first order reaction will be the same duration as the first. So if we need an integer number of half lives (i.e., 2 half lives, 3 half lives, 4 half lives, etc), we can calculate the half life just once and then multiply by the number of half lives we need We had to wait for 2 half lives and they were each 31507 seconds in duration. Our total waiting time has been 2 (31507 s) = 63014 s 6.30 x 104 s PHR 416 18/07/1438

The rate constant, k, has units of L mole-1 sec-1. Zero-Order Reaction For a zero-order reaction, the rate of reaction is a constant. When the limiting reactant is completely consumed, the reaction abrupts stops. Differential Rate Law:       r = k The rate constant, k, has units of mole L-1 sec-1. First-Order Reaction For a first-order reaction, the rate of reaction is directly proportional to the concentration of one of the reactants. Differential Rate Law:       r = k [A] The rate constant, k, has units of sec-1. Second-Order Reaction For a second-order reaction, the rate of reaction is directly proportional to the square of the concentration of one of the reactants. Differential Rate Law:       r = k [A]2 The rate constant, k, has units of L mole-1 sec-1. PHR 416 18/07/1438

Summary PHR 416 18/07/1438

example PHR 416 18/07/1438

Example: The decomposition of hydrogen iodide is described by the following equations: 2HI(g) ----------> H2(g) + I2(g) Rate = k [HI]2 At 427 C, the rate constant k has the value 1.20 x 10-3 mol-1 L s-1 If the initial concentration of HI is 0.560 mol L-1, what will the HI concentration be after 2.00 hours of reaction time? PHR 416 18/07/1438

Solution: Since the rate constant has the time units in seconds, we must convert the 2.00 hour of reaction time to seconds: 60 min 60 s 2.00 h x --------- x -------- = 7200 s 1 h 1 min [HI]0 = 0.560 mol L-1 and k = 1.20 x 10-3 mol -1 L s-1 From these, we can calculate [HI]t The rate law indicates that this is a second order reaction, so we use the second order integrated rate law. Substituting HI for the generic substance A in that equation, we have PHR 416 18/07/1438

[HI]t = 0.09592 mol L-1 PHR 416 18/07/1438

Summary PHR 416 18/07/1438