CHEMICAL KINETICS Goal of kinetics experiment is to measure concentration of a species at particular time during a rxn so a rate law can be determined.

Slides:



Advertisements
Similar presentations
KINETICS -REACTION RATES
Advertisements

Chapter 12 Chemical Kinetics
AP Chapter 14.  Chemical kinetics is the area of chemistry that involves the rates or speeds of chemical reactions.  The more collisions there are between.
Chapter 14 Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Lecture Presentation © 2012 Pearson Education, Inc.
Ch. 13: Chemical Kinetics Dr. Namphol Sinkaset Chem 201: General Chemistry II.
Chemical Kinetics Chapter
Nanochemistry NAN 601 Dr. Marinella Sandros Lecture 5: Kinetics
Elementary Chemical Kinetics ( )
Chapter 13 Chemical Kinetics
Rate Laws Example: Determine the rate law for the following reaction given the data below. H 2 O 2 (aq) + 3 I - (aq) + 2H + (aq)  I 3 - (aq) + H 2 O (l)
Slide 1 of Zero-Order Reactions A → products R rxn = k [A] 0 R rxn = k [k] = mol L -1 s -1.
1 Kinetics Chapter The study of rxn rates Rxn rate =  concentration/  time Rxn rate =  concentration/  time Example: Example: 2N 2 O 5  4NO.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chemical Kinetics Chapter 14. The Rate Law Rate law – description of the effect of concentration on rate aA + bB cC + dD Rate = k [A] x [B] y reaction.
Chemical Kinetics Collision Theory: How reactions takes place
Chemical Kinetics Chapter 16. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate.
Chemical Kinetics © 2009, Prentice-Hall, Inc. First-Order Processes Therefore, if a reaction is first-order, a plot of ln [A] vs. t will yield a straight.
Chapter 14: Rates of Reaction Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
Chapter 12 Chemical Kinetics. Chapter 12 Table of Contents Copyright © Cengage Learning. All rights reserved Reaction Rates 12.2 Rate Laws: An.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13.
Things to know…….  Rate depends on temperature  Temp is the avg. KE  Order depends on rxn mechanism  Rate is determined by the slow step  Temp affects.
Chemical Kinetics 1 Chemical kinetics Plan 1. The subject of a chemical kinetics. 2. Classification of chemical reactions. 3. Determination methods of.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Chemical Kinetics Chapter 12. Chemical Kinetics The area of chemistry that concerns reaction rates.
1 Chemical Kinetics The area of chemistry that concerns reaction rates. The area of chemistry that concerns reaction rates.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chemical Kinetics Two Types of Rate Laws 1.Differential- Data table contains RATE AND CONCENTRATION DATA. Uses “table logic” or algebra to find the order.
Kinetics. This is important!!! determine rate laws & units from experimental data calculate rates & concentrations of reactants or products under given.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
What is this?. Kinetics Reaction Rates: How fast reactions occur.
Rate Expression VIDEO AP 6.1. Collision Theory: When two chemicals react, their molecules have to collide with each other with proper energy and orientation.
Rate Law & Reaction Order 02
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Kinetics Follow-up. Average Rate Instantaneous rate of reactant disappearance Instantaneous rate of product formation.
Chapter 14 Chemical Kinetics Chemical Kinetics CH 141.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
AP CHEMISTRY CHAPTER 12 KINETICS. 2 Chemical Kinetics Thermodynamics tells us if a reaction can occur Kinetics tells us how quickly the reaction occurs.
Chemical Kinetics The “Speed” of the Reaction Or Reaction Rates.
Integrated Rate Laws How to solve.
Kinetics Chemistry—Introduction
Second and Zero rate orders Chapter 14 part IV. Second Order Rate Laws  Butadiene forms its dimer  2C 4 H 6 (g) - > C 8 H 12 (g)
Chemical Kinetics By: Ms. Buroker. Chemical Kinetics Spontaneity is important in determining if a reaction occurs- but it doesn’t tell us much about the.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 14 Chemical Kinetics. Reaction Rates Combustion of propane (C 3 H 8 ) Rusting of iron (Fe 2 O 3 ) Rate at which reactants disappear / products.
CHEMICAL KINETICS H 2 S (g) + Zn 2+ (aq) ⇆ ZnS (s) + 2H + (aq) Chemical reactions can be viewed from different perspectives 4D-1 (of 21) STOICHIOMETRY.
Expresses the reactant concentrations as a function of time. aA → products Kinetics are first order in [A], and the rate law is Rate = k[A] Integrated.
KINETICS. Studies the rate at which a chemical process occurs. a A + b B c C + d D v = - dc/dt = k [A]x [B]y Besides information about the speed at which.
Chpt 12 - Chemical Kinetics Reaction Rates Rate Laws Reaction Mechanisms Collision Theory Catalysis HW set1: Chpt 12 - pg , # 22, 23, 28 Due Jan.
AP Chem Kinetics integrated rate laws, half life.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Kinetics Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.
Chapter 14: Kinetics Wasilla High School
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Kinetics. Reaction Rate  Reaction rate is the rate at which reactants disappear and products appear in a chemical reaction.  This can be expressed as.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
T 1/2 : Half Life Chemical Kinetics-6. Can be derived from integrated rate law.
Chapter 13 Chemical Kinetics CHEMISTRY. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of.
AP CHEMISTRY Chapter 14 Chemical Kinetics Chemical Kinetics Study of how rapidly a reaction will occur. In addition to speed of reaction, kinetics.
Chapter 12 - Kinetics DE Chemistry Dr. Walker.
Rate Expression and reaction mechanism
Introduction to Reaction Rates
What is this?.
Rates and Rate Laws.
Chemical Kinetics Chapter 12.
Integrated Rate Law Expresses the reactant concentrations as a function of time. aA → products Kinetics are first order in [A], and the rate law is Rate.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Chemical Kinetics lecture no.8
Introduction to Reaction Rates
Chapter 12 Chemical Kinetics.
Presentation transcript:

CHEMICAL KINETICS Goal of kinetics experiment is to measure concentration of a species at particular time during a rxn so a rate law can be determined Rate of Rxn: describes how fast reactants used up & pdts formed rates are obtained from concen. vs fct of time Chem Kinetics: 1)study of rates, 2) factors that affect rxn rates, & 3) mechanisms (steps) by which rxns occur From a chem eqn, rate can be determined by following the  concen of any subst that is quantitatively detected

4 factors that affect chem rxns 1) nature of reactants 2) concen of reactants 3) temp 4) catalyst present Write rate law for rxn to describe how rate depends on concen. Order of rxn cannot be deduced from chemical eqn. of rxn Rate law expressions - calculate rate of rxn from rate constant & reactant concen - convert into eqn to determine concen of any time Rate Law is deduced experimentally from how its rate varies w/ concen Order of rxn cannot be deduced from chemical eqn. of rxn

exponents x & y - usually integers - value of x is the order of rxn w/ respect to A - y?? Values for k, x, & y have no relation to coeff of balanced chem eqn., remember, must be determined experimentally For rxn: A + B -----> pdts general form: rate = k[A] x [B] y Exponent Define rate not depend on [reacts] rate is directly proportional to [reacts] rate is directly proportional to square of concen; [reacts] 2 overall order of rxn = x + y Sum of orders of reacts

order in NO: overall order: - order in rate law may not match coeff. in balanced eqn - no way to predict rxn orders overall from balanced eqn - orders must be determined experimentally Examples of observed rate laws for following rxns 3NO (g) > N 2 O (g) + NO 2 (g) rate = k[NO] 2 2NO 2 (g) + F 2 (g) > 2NO 2 F (g) rate = k[NO 2 ][F 2 ] order in NO 2 : order in F 2 : overall order: 2 nd 1 st 2 nd quick summary

rate law can be determined by 2 methods: 1) Method of Initial Rates (if time) 2) using Integrated Rate Eqn

ZERO ORDER Has a rate which is independent of concentration of reactant(s), therefore, increasing concen. of rxning species not speed up rate Rate is: Rate is a CONSTANT A -----> pdts integration gives eqn called integrated zero-order rate law [A] = -kt + [A] o Initial concentr concentr of particular time

[A] = -kt + [A] o eqn line: y = mx + b time, t [A] calculate k from plot of graph; straight line plot of [A] vs time, t ; slope = -k Determine units:

half-life describes time needed for half of reactant to be depleted

FIRST ORDER Depends on concentration of only 1 reactant, if other reactants present but each will be zero-order eqn for first-order reaction A -----> pdts 1 st order rate constant, units of 1/time integration gives eqn called integrated first-order rate law ln[A] = -kt + ln[A] o rate is: know: eqn line: y = m x + b

calculate k from plot of graph; plot of ln[A] vs time, t ; gives straight line slope = -k time, t [A] time, t ln[A] Determine units:

half-life describes time needed for half of reactant to be depleted

SECOND ORDER A. A > pdts depends on concentration of 2 nd -order reactant second-order rate law integrated in the form: [A] t = 0 & t: B. or, A + B = pdts two 1 st -order reactants: rate is: ln r = ln k + 2 ln[A] Another way to represents rate laws, take ln of both sides:

Plot 1/[A] vs time, t ; slope = 2 nd -order rate constant; +k eqn line: y = m x + b time, t 1/[A]

half-life for 2 nd order dependent on one 2 nd order reactant: Determine units:

FIRST ORDER REACTION 2 N 2 O 5 (aq) > 4 NO 2 (aq) + O 2 (g) ln[N 2 O 5 ] 1/[N 2 O 5 ], M -1 DATA Time, s [ N 2 O 5 ], M

time,s [N 2 O 5 ] time,s ln[N 2 O 5 ] time,s 1/[N 2 O 5 ] rate = k[N 2 O 5 ]

time,s ln[N 2 O 5 ] slope =

SECOND ORDER REACTION 2 NO 2 (g) > 2 NO (g) + O 2 (g) ln[N 2 O 5 ] 1/[N 2 O 5 ], M -1 DATA Time, s [ N 2 O 5 ], M

time,s [NO 2 ] time,s ln[NO 2 ] time,s 1/[NO 2 ] rate = k[NO 2 ] 2

time,s 1/[NO 2 ] slope =

ZERO ORDER REACTION Can occur if: 1) rate limited by [catalyst] 2) photochemical rxn if rate determined by light intensity 3) most often occur when subst as a metal surface or enzyme required for rxn to occur 2 N 2 O (g) > 2 N 2 (g) + O 2 (g) N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O Pt metal surface

N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O N2ON2O Describe what is happening Rxn occurs on a hot Pt surface, when surface completely covered w/ N 2 O molecules, an increase of [N 2 O] has no effect on rate, since only N 2 O molecules on the surface are reacting. Therefore, the rate is constant because rsn is controlled by what happens on Pt surface rather than total [N 2 O].

time,s [N 2 O] rate = k[N 2 O] 0

Determine: UNITS HALF-LIFE 0 ORDER 1 ST ORDER 2 ND ORDER

Summary for reaction orders 0, 1, 2, & n Zero-Order First-Order Second-Order nth-Order Rate Law Integrated Rate Law Units of Rate Constant (k) Linear Plot to determine k y-intercept Half-life [A] = [A] O - kt [A] = [A] O e -kt ln[A] = ln[A] O - kt [A] vs t -k ln[A] vs t -k [A] O ln[A] O

NOTES Rate Rxn - describe rate rxn must determine concen of react/pdt at various times as rxn proceeds - devising methods is challenge for chemists -spectroscopic method: if 1 subst colored measure inc/dec in intensity of color 4 Factors: help control rates

Comparing the 2 experiments, [B] is  ed by factor of: * M 1.0 * M 1.5 * M. s * M 2.0 * M 3.0 * M. s * M 1.0 * M 6.0 * M. s -1 M ETHOD OF INITIAL RATES describing same rxn in each experiment, same rate law, form: rate = k[A] x [B] y Notice, [A] O same in #1 & #2, what would affect the rxn rate? deduce rate law from experimental rate data Experiment [A] O [B] O initial rate  es in rxn rate due to diff initial concen of B

rate  es by factor of: What order is rxn order in [B]? rate ratio = ([B]) y Exponent y deduced from: 2.0 = (2.0) y solving, y = 1 rate = k[A] x [B] 1 Experiments 1 & 3 show [B] O same but [A] O different [A] is  ed by factor of: rate  es by factor of:

What order is rxn order in [A]? rate ratio = ([A]) x Exponent x deduced from: 4.0 = (2.0) x solving, x = 2 rate = k[A] 2 [B] 1 Rate constant, k, substitute data from any set of 3 sets into rate-law expression or, rate = 1.5 M -2. s -1 [A] 2 [B] rate 1 = k[A] 1 2 [B] 1 1