Heliospheric Propagation of ICMEs: The Drag-Based Model B. Vršnak 1, T. Žic 1, M. Dumbović 1, J. Čalogović 1, A. Veronig 2, M. Temmer 2, C. Moestl 2, T.

Slides:



Advertisements
Similar presentations
7-13 September 2009 Coronal Shock Formation in Various Ambient Media IHY-ISWI Regional Meeting Heliophysical phenomena and Earth's environment 7-13 September.
Advertisements

Global Properties of Heliospheric Disturbances Observed by Interplanetary Scintillation M. Tokumaru, M. Kojima, K. Fujiki, and M. Yamashita (Solar-Terrestrial.
Forbush Decrease Prediction Based on Remote Solar Observations M. Dumbović, B. Vršnak Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia.
MHD modeling of coronal disturbances related to CME lift-off J. Pomoell 1, R. Vainio 1, S. Pohjolainen 2 1 Department of Physics, University of Helsinki.
Valbona Kunkel June 18, 2013 Hvar, Croatia NEW THEORITICAL WORK ON FLUX ROPE MODEL AND PROPERTIES OF MAGNETIC FIELD.
CAS Key Laboratory of Geospace Environment, USTC The Deflection of 2008 September 13 CME in Heliosphere Space ISEST, Hvar, Croatia,2013 June 17 Collaborators:
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
Reviewing the Summer School Solar Labs Nicholas Gross.
Assessing the Contribution of Heliospheric Imaging in Improving Space Weather Prediction SHINE Session 6 Simon Plunkett and Doug Biesecker Thursday Morning.
COMESEP: Forecasting the Space Weather Impact Norma Crosby 1, Astrid Veronig 2, Eva Robbrecht 3, Bojan Vrsnak 4, Susanne Vennerstrøm 5, Olga Malandraki.
E. Robbrecht – SIDC- Royal Observatory of Belgium 8 March 2007 The statistical importance of narrow CMEs Open questions to be addressed by SECCHI Eva Robbrecht,
Two energy release processes for CMEs: MHD catastrophe and magnetic reconnection Yao CHEN Department of Space Science and Applied Physics Shandong University.
Heliospheric MHD Modeling of the May 12, 1997 Event MURI Meeting, UCB/SSL, Berkeley, CA, March 1-3, 2004 Dusan Odstrcil University of Colorado/CIRES &
30-Day Science Plan Angelos Vourlidas, Russ Howard SECCHI Consortium Meeting IAS 8 March 2007.
CME-driven Shocks in White Light Observations SOHO/LASCO C3 – CME May 5 th, 1999 CME-driven Shock We demonstrate that CME-driven shocks: (1) can be detected.
C. May 12, 1997 Interplanetary Event. Ambient Solar Wind Models SAIC 3-D MHD steady state coronal model based on photospheric field maps CU/CIRES-NOAA/SEC.
CISM solar wind metrics M.J. Owens and the CISM Validation and Metrics Team Boston University, Boston MA Abstract. The Center for Space-Weather Modeling.
In both cases we want something like this:
When will disruptive CMEs impact Earth? Coronagraph observations alone aren’t enough to make the forecast for the most geoeffective halo CMEs. In 2002,
C. May 12, 1997 Interplanetary Event. May 12, 1997 Interplanetary Coronal Mass Ejection Event CU/CIRES, NOAA/SEC, SAIC, Stanford Tatranska Lomnica, Slovakia,
Coronal and Heliospheric Modeling of the May 12, 1997 MURI Event MURI Project Review, NASA/GSFC, MD, August 5-6, 2003 Dusan Odstrcil University of Colorado/CIRES.
Influence of Time-dependent Processes and Background Magnetic Field on Shock Properties N. Lugaz, I. Roussev and C. Downs Institute for Astronomy Igor.
RT Modelling of CMEs Using WSA- ENLIL Cone Model
Characterization of Coronal Mass Ejection Deflection using Coronagraph Image Sequences Jenna L. Zink, GMU Undergraduate Research Scholars Program, Rebekah.
Why a Sun-Earth line Coronagraph is Best Doug Biesecker NOAA/SWPC.
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
High-Cadence EUV Imaging, Radio, and In-Situ Observations of Coronal Shocks and Energetic Particles: Implications for Particle Acceleration K. A. Kozarev.
The Sun and the Heliosphere: some basic concepts…
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
Evolution of the 2012 July 12 CME from the Sun to the Earth: Data- Constrained Three-Dimensional MHD Simulations F. Shen 1, C. Shen 2, J. Zhang 3, P. Hess.
Assessing Predictions of CME Time- of-Arrival and 1 AU Speed to Observations Angelos Vourlidas Vourlidas- SHINE
RECREATING THE THREE DIMENSIONAL STRUCTURE OF INTERPLANETARY CORONAL MASS EJECTIONS Timothy A. Howard and S. James Tappin AGU Fall Meeting, December,
On the February 14-15, 2011 CME-CME interaction event and consequences for Space Weather Manuela Temmer(1), Astrid Veronig(1), Vanessa Peinhart(1), Bojan.
Arrival time of halo coronal mass ejections In the vicinity of the Earth G. Michalek, N. Gopalswamy, A. Lara, and P.K. Manoharan A&A 423, (2004)
The Solar Wind.
1 Acceleration and Deceleration of Flare/Coronal Mass Ejection Induced Shocks S.T. Wu 1, C.-C. Wu 2, Aihua Wang 1, and K. Liou 3 1 CSPAR, University of.
Questions that we are facing in forecasting CME’s arrival Yuming Wang & Chenglong Shen STEP USTC Croatia.
Lessons for STEREO - learned from Helios Presented at the STEREO/Solar B Workshop, Rainer Schwenn, MPS Lindau The Helios.
Forecast of Geomagnetic Storm based on CME and IP condition R.-S. Kim 1, K.-S. Cho 2, Y.-J. Moon 3, Yu Yi 1, K.-H. Kim 3 1 Chungnam National University.
CSI 769 Fall 2009 Jie Zhang Solar and Heliospheric Physics.
The Space Weather Week Monique Pick LESIA, Observatoire de Paris November 2006.
11. Assessing the Contribution of Heliospheric Imaging, IPS and other remote sensing observations in Improving Space Weather Prediction Bernie Jackson,
Modeling 3-D Solar Wind Structure Lecture 13. Why is a Heliospheric Model Needed? Space weather forecasts require us to know the solar wind that is interacting.
Heliospheric Simulations of the SHINE Campaign Events SHINE Workshop, Big Sky, MT, June 27 – July 2, 2004 Dusan Odstrcil 1,2 1 University of Colorado/CIRES,
Solar Wind Propagation Tool Chihiro Tao 1,2, Nicolas Andre 1, Vincent Génot 1, Alexis P. Rouillard 1, Elena Budnik 1, Arnaud Biegun 1, Andrei Fedorov 1.
Analysis of 3 and 8 April 2010 Coronal Mass Ejections and their Influence on the Earth Magnetic Field Marilena Mierla and SECCHI teams at ROB, USO and.
Shocks in the IPS Wageesh Mishra Eun-kyung Joo Shih-pin Chen.
Multi-Point Observations of The Solar Corona for Space weather Acknowledgements The forecasting data was retrieved from NOAA SWPC products and SIDC PRESTO.
The CME geomagnetic forecast tool (CGFT) M. Dumbović 1, A. Devos 2, L. Rodriguez 2, B. Vršnak 1, E. Kraaikamp 2, B. Bourgoignie 2, J. Čalogović 1 1 Hvar.
State of NOAA-SEC/CIRES STEREO Heliospheric Models STEREO SWG Meeting, NOAA/SEC, Boulder, CO, March 22, 2004 Dusan Odstrcil University of Colorado/CIRES.
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
1 Pruning of Ensemble CME modeling using Interplanetary Scintillation and Heliospheric Imager Observations A. Taktakishvili, M. L. Mays, L. Rastaetter,
IPS tomography IPS-MHD tomography. Since Hewish et al. reported the discovery of the interplanetary scintillation (IPS) phenomena in 1964, the IPS method.
The COMESEP Space Weather Alert System Luciano Rodriguez on behalf of the COMESEP Consortium (European Commission FP7 Project )
Interplanetary proton and electron enhancements associated with radio-loud and radio-quiet CME-driven shocks P. Mäkelä 1,2, N. Gopalswamy 2, H. Xie 1,2,
Manuela Temmer Institute of Physics, University of Graz, Austria Tutorial: Coronal holes and space weather consequences.
Detecting, forecasting and modeling of the 2002/04/17 halo CME Heliophysics Summer School 1.
CME-driven Shocks in White Light Observations Verónica Ontiveros National University of Mexico, MEXICO George Mason University,USA Angelos Vourlidas Naval.
An Introduction to Observing Coronal Mass Ejections
ICME in the Solar Wind from STEL IPS Observations
Introduction to Space Weather Interplanetary Transients
Predicting the Probability of Geospace Events Based on Observations of Solar Active-Region Free Magnetic Energy Dusan Odstrcil1,2 and David Falconer3,4.
D. Odstrcil1,2, V.J. Pizzo2, C.N. Arge3, B.V.Jackson4, P.P. Hick4
Drag-Based Model of ICME Propagation
Magnetic clouds and their driven shocks/sheaths near Earth: geoeffective properties studied with a superposed epoch technique Dasso S.1,2, Masías-Meza.
Corona Mass Ejection (CME) Solar Energetic Particle Events
Forecasting the arrival time of the CME’s shock at the Earth
ESS 261 Topics in magnetospheric physics Space weather forecast models ____ the prediction of solar wind speed April 23, 2008.
High-cadence Radio Observations of an EIT Wave
Phillip Hess Jie Zhang, Dusan Odstrcil
Presentation transcript:

Heliospheric Propagation of ICMEs: The Drag-Based Model B. Vršnak 1, T. Žic 1, M. Dumbović 1, J. Čalogović 1, A. Veronig 2, M. Temmer 2, C. Moestl 2, T. Rollett 2, L. Rodriguez 3 1 Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia 2 IGAM/Institute of Physics, University of Graz, Graz, Austria 3 Royal Observatory of Belgium, Brussels, Belgium B. Vršnak 1, T. Žic 1, M. Dumbović 1, J. Čalogović 1, A. Veronig 2, M. Temmer 2, C. Moestl 2, T. Rollett 2, L. Rodriguez 3 1 Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia 2 IGAM/Institute of Physics, University of Graz, Graz, Austria 3 Royal Observatory of Belgium, Brussels, Belgium This work has received funding from the European Commission FP7 Project COMESEP (263252) ACKNOWLEDGMENT ABSTRACT The advanced space-weather forecast-tool for predicting the arrival of Interplanetary Coronal Mass Ejections (ICMEs) is presented. The forecast-tool is based on the "Drag-Based Model" (DBM), taking into account the ICME shape using cone geometry with a semi-circular leading edge, spanning over the ICME full angular width. DBM is based on a hypothesis that the driving Lorentz force that launches CME ceases in the upper corona, and that beyond certain distance the dynamics becomes governed solely by the interaction of the ICME and the ambient solar wind. This assumption is founded on the fact that in the interplanetary space fast ICMEs decelerate, whereas slow ones accelerate, showing a tendency to adjust their velocity with the ambient solar wind. In particular, we consider the option where the drag acceleration has the quadratic dependence on the ICME relative speed, which is expected in the collisionless environment, where the drag is caused primarily by emission of MHD waves. This is the simplest version of DBM, where the equation of motion can be solved analytically, providing explicit solutions for the Sun-Earth ICME transit time and the impact speed. Basic DBM results are compared with remotely-measured interplanetary kinematics of several ICMEs, whereas forecasting abilities are tested on the statistical basis by employing in situ measurements. An example is shown for the advanced version of DBM, where geometry of ICME is taken into account. ABSTRACT The advanced space-weather forecast-tool for predicting the arrival of Interplanetary Coronal Mass Ejections (ICMEs) is presented. The forecast-tool is based on the "Drag-Based Model" (DBM), taking into account the ICME shape using cone geometry with a semi-circular leading edge, spanning over the ICME full angular width. DBM is based on a hypothesis that the driving Lorentz force that launches CME ceases in the upper corona, and that beyond certain distance the dynamics becomes governed solely by the interaction of the ICME and the ambient solar wind. This assumption is founded on the fact that in the interplanetary space fast ICMEs decelerate, whereas slow ones accelerate, showing a tendency to adjust their velocity with the ambient solar wind. In particular, we consider the option where the drag acceleration has the quadratic dependence on the ICME relative speed, which is expected in the collisionless environment, where the drag is caused primarily by emission of MHD waves. This is the simplest version of DBM, where the equation of motion can be solved analytically, providing explicit solutions for the Sun-Earth ICME transit time and the impact speed. Basic DBM results are compared with remotely-measured interplanetary kinematics of several ICMEs, whereas forecasting abilities are tested on the statistical basis by employing in situ measurements. An example is shown for the advanced version of DBM, where geometry of ICME is taken into account. THE BASIC MODEL The basic DBM is based on the hypothesis that beyond ~20 solar radii the MHD “aerodynamic” drag caused by the interaction of ICME with solar wind, becomes the dominant force, so the equation of motion becomes:.... r = –  (r – w) |r – w| Running-difference images of the ICME take-off (LASCO/SOHO) and source position (AIA/SDO), providing the basic model input v 0 (R 0,t 0 ) and advanced model input  and  CASE STUDIES Comparison of the modeled and observed ICME kinematics (based on STEREO A&B data) Measurements taken from Liu et al. 2010, ApJ 722, 1762 STATISTICAL STUDY Comparing calculated and observed transit times and speeds at 1 AU we estimated range of values for  and w. Optimal values,    km  and w = 500 km/s, have been found also by minimizing the scatter of the difference between the observed and calculated transit times (O– C). Samples used: Schwenn et al., 2005, AnnGeo. 26, 1033, Manoharan, 2006, SPh 235, 345 THE ADVANCED MODEL ONLINE FORCAST TOOL - EXAMPLE CONCLUSION As a consequence fast ICMEs deccelerate, whereas slow ICMEs accelerate ( r w ) w is the speed of the solar wind and  is the drag parameter. The drag parameter depends on characteristics of both ICME and solar wind – the drag is stronger for broader, low-mass ICMEs in a high-density (slow) solar wind. In the simplest form, we assume  w = const.. AIM: prediction of ICME arrival BASIC DBM ASSUMPTION: MHD drag governs the propagation of ICME beyond ~20 solar radii ADVANCED DBM ASSUMPTION: ICME is cone-shaped with the semi-circular leading edge INPUT: v 0 (R 0,t 0 ) and  from the coronagraphic observations, source position from EUV observations PARAMETERS: , w=const. and are derived empirically (in simplest form ) OUTPUT: ICME transit time and speed at some distance from the Sun (e.g. 1 AU) ADVANTAGES: easy handling, straightforward application in the real-time space-weather forecasting DRAWBACKS: does not predict arrival of shock, typical error for forecast models (~10 h) correspondence: In the advanced form DBM takes into account also the shape of ICME, where ICME is cone- shaped with the semi-circular leading edge spanning over the ICME full angular width 2 . In the advanced version we track the propagation of the element moving along the angle  (derived using EUV observations as well), assuming that the overall shape remains unchanged. to the spacecraft ICME direction M9 flare N19W36 CME v 0 (R 0,t 0 )=1315.1km/s HALO,  =90deg INPUT OUTPUT