 の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01.

Slides:



Advertisements
Similar presentations
Η photo-production off nucleons Some evidence of D 15 (2080) in the reaction Xian-Hui Zhong Hunan Normal University In collaboration with Qiang Zhao.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Hadron physics with GeV photons at SPring-8/LEPS II
Neutrino-induced meson production model for neutrino oscillation experiments Satoshi Nakamura Nuclear Theory Group.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
HL-ch.3 Sept. 2002Student Seminar Subatomic Physics1 Seminar Subatomic Physics Chapter 3: New developments in hadronic particle production Nucleon resonances.
Generalities of the approaches for extraction of N* electrocouplings at high Q 2 Modeling of resonant / non resonant contributions is needed and should.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Hadron Spectroscopy from Lattice QCD
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector 孙宝玺 北京工业大学 合作者 : 吕晓夫 四川大学 FHNP’15, 怀柔, 北京.
Nucleon resonance studies in π + π - electroproduction off protons at high photon virtualities E. Isupov, EMIN-2009.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Magnetic moments of baryon resonances Teilprojekt A3 Volker Metag II. Physikalisches Institut Universität Giessen Germany SFB/TR16 Mitgliederversammlung.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
Hyun-Chul Kim Department of Physics Inha University In collaboration with H.Y. Ryu, A. Hosaka, A. Titov EFB 22, Sept. 10, meson photoproduction.
Signature of strange dibaryon in kaon-induced reaction Shota Ohnishi A in collaboration with; Y. Ikeda B, H. Kamano C, T. Sato A A; Department of Physics,
Mixing properties of a 1 (1260) axial vector meson ~ Composite and elementary natures ~ Hideko NAGAHIRO (Nara Women’s University) H. Nagahiro, K. Nawa,
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
June 16-20, 2005 北京 1 Atsushi Hosaka (RCNP, Osaka Univ) Decay and production of  + hep-ph/ , PRD71: (2005) A. H., M. Oka and T. Shinozaki.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
V.I.Mokeev Hadron2011, June 13 –17, 2011, Munich Nucleon resonance electrocouplings from CLAS data on pion electroproduction V.I. Mokeev, I.G. Aznauryan,
Study of Excited Nucleon States at EBAC: Status and Plans Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz,
Low energy reaction K - p → Λη and the negative parity Λ resonances Liye Xiao (肖立叶) tutor: Xianhui Zhong The Seventh International Symposium on Chiral.
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Photoproduction of Cascade baryons Yongseok Oh (UGA) H. Haberzettl (GWU) K. Nakayama (UGA) nucl- th/
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
S. Aoki (Univ. of Tsukuba), T. Doi (Univ. of Tsukuba), T. Hatsuda (Univ. of Tokyo), T. Inoue (Univ. of Tsukuba), N. Ishii (Univ. of Tokyo), K. Murano (Univ.
Hadron excitations as resonant particles in hadron reactions
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Three-body hadronic molecules.
Photoproduction of K* for the study of the structure of L(1405)
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Photoproduction of K* for the study of L(1405)
Recent results on light hadron spectroscopy at BES
Testing the Structure of Scalar Mesons in B Weak Decays
Shota Ohnishi (Tokyo Inst. Tech. / RIKEN)
Deeply Bound Mesonic States -Case of Kaon-
Signature of L(1405) in K-dpSn reaction
Regge Description of
On the analytic structure of the KN - pS scattering amplitudes
Presentation transcript:

 の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01

Introduction  1st excited state of  E   _ (MeV) (1405, -25)  * Existence “predicted” by Dalitz and Tuan (1960) in analysis of KN scattering length with  model * First experimental evidence in   p   (1961) _ _ Alston et al., PRL 6 (1961)   p  

Controversial  structure 3-quark + mass splitting term Collins & Georgi, PRD 59 (1999) Schat et al., PRL 88 (2002) 5-quark Strottman, PRD 20 (1979) Zou, NPA 835 (2010) too many states Meson-baryon molecule Dalitz & Tuan, PRL 2 (1959) Oset & Ramos, NPA 635 (1998) Too light to interpret as naïve 3-quark state

(i,j,k : meson-baryon channel)  as pole of Scattering amplitude Coupled-channel scattering equation for T-matrix (scattering amplitude) Near pole position : T-matrix for real energy W is used to calculate observables (cross sections, etc.) Analytic continuation to complex energy W Resonance is identified by :mass width Resonance pole can be extracted from analyzing data

Why want to know  pole(s) ? Internal structure of  constraint on hadron structure models Nuclear structure of deeply bound kaonic nuclei (e.g., K - pp ) K - p -  amplitude is essential input current status for K - pp : rather large model dependence B.E. = 10 – 100 MeV, Width = 35 – 110 MeV

Pole structure of  Two-pole cloudy bag model Veit et al. PRD 31, 1033 (1985) chiral unitary model Jido et al. NPA 725, 181 (2002) Single-pole potential models Fink et al., PRC 41, 2720 (1990) Akaishi-Yamazaki model PRC 65, (2002) Still, pole structure has not been established

Attempt to determine  pole from data E   _ (MeV) (1405, -25)  Ideal experiment    Impossible !      } Energy at  Two-meson production experiment   difficulty in determining  pole structure

How to extract  pole from two-meson production data Construct a model that consists of production mechanism + final state interaction (FSI) FSI contains MB   amplitude Fit data with adjustable parameters in production mechanism and MB   amplitude Extract poles from MB   amplitude But, good data had not been available until recently

Photo-production of  LEPS/Spring-8 Ahn et al., NPA 721, 715 (2003) LEPS/Spring-8 Niiyama et al., PRC 78, (2008) CLAS/JLab Moriya et al., PRC 87, (2013) (  invariant mass distribution) PRC 88, (2013) (    angular distribution)  p         Experiments

 line-shape data from CLAS/JLab  p         Moriya et al., PRC 87, (2013) Cleanest data for   progress toward pole extraction

What to do here ? Production mechanism + s-wave rescattering Gauge invariance at tree level Fit data Develop  UM-based model for  p    

MODEL Chiral unitary model Photo-production mechanism

Chiral Unitary Model (  UM) : Weinberg-Tomozawa interaction Coupled-channel scattering equation Oset & Ramos, NPA (1998) Oset et al., PLB (2002)

Chiral Unitary Model (  UM) On-shell factorization  renormalization scale ) (W : total energy) Dimensional regularization _ Subtraction constant, fitted to data

Chiral Unitary Model (  UM) Good description of   p    N, ,  data above and near   p threshold _

Chiral Unitary Model (  UM) pole position 1390  66i 1426  16i    Coupling strength Jido et al. NPA 725, 181 (2002) Two-pole structure

Photo-production Model Minimal substitution

Photo-production Model Minimal substitution

Photo-production Model Minimal substitution

Photo-production Model

Rescattering  UM s-wave amplitude ( 

Fit data Subtraction constants (10 parameters) contact production mechanism (30 parameters) (total energy (W) dependent complex couplings, gauge invariant) Form factors (1 parameters)

* Good description of line-shape data * Different peak position for different charge states  Two-pole structure plays a role ?? Results

Resonant and non-resonant contributions Non-resonantResonant

Resonant and non-resonant contributions * Significant non-resonant contribution  Shifting peak positions Same resonance peak position  2 nd pole (1426  –  16i) seems dominant  Single-pole model works as well ??

Isospin decomposition I=0 (  dominance Small but nonnegligible effect of I=2 contribution

Single Breit-Wigner model Single Breit-Wigner model works ! 1 pole solution is still not excluded

K + angular distribution Moriya et al, PRC 88, (2013) New data from CLAS/JLab for  p     Fitting only lineshape  very different angular distributions is still possible  K + angle data are important to constrain production mechanism

K + angular distribution (not fitted) Overall trend is captured in our model  More fit will be done   pole structure will be extracted

Summary Pole structure of  has not been well confirmed by data New CLAS data for  p     cleanest data in  region  hope to extract  pole structure  p     model is developed with  UM amplitude -- meson-exchange + contact production mechanism (gauge tree level) -- Line-shape data are well fitted -- Single Breit-Wigner model also can fit line-shape data

Future work Fit K + angle data from CLAS  UM amplitude (subtraction constant) is also varied  extraction of  pole structure Use different contact interactions, form factors  study model dependence of extracted poles

Future work One- or two-pole structure ? Very new data from CLAS (yesterday) for electroproduction of  PRC 88, (2013) 1.6 (GeV/c) 2 < Q 2 < 3.0 (GeV/c) 2 Fairly clear two peaks !  two-pole solution ? Higher statistics data hoped !

Possible ideas for  photoproduction experiments at ELPH, LEPS, LEPS2 Data wanted for less model-dependent determination of  properties Double-differential cross sections Polarization observable Multi-channel data  ,    unsubtracted data (cf. CLAS data)  p              

Backups

   p         Thomas et al., NPB 56, 15 (1973)    p             Crystall Ball, PRC 70, (2004)    d   n    n  J-PARC proposal Attempt to determine pole structure of  Hadron beam experiments Confront theory with data below KN threshold

 UM-based calculation for    p      Hyodo et al., PRC 68, (2003) …  p  Data: Thomas et al., NPB (1973)

 UM-based calculation for    p        Magas et al., PRL 95, (2005) + Data: Crystall Ball, PRC (2004) the peak is due to second pole d  d M I (arbitrary scale)

K + angular distribution Moriya et al, arXiv: Very new data from CLAS/JLab for  p    

LEPS/SPring8 data Forward K + kinematics of  p     Y* LEPS and CLAS data are consistent at low energies No LEPS data for normalized line shape for  p       We analyze only CLAS data Comparison with CLAS data for  p     Y* Niiyama et al., PRC (2008) CLAS LEPS (Moriya et al, arXiv: )

Lagrangians

Hidden local symmetry model fixed by V   M decay width; relative phase by SU(3)

Tensor coupling SU(3) relation for magnetic coupling

Nacher et al., PLB 455, 55 (1999) Niiyama et al., PRC (2008) Nacher et al., PLB (1999) Calculated line shape is : Wrong in ordering     and     Too small cross section ?

P-wave scattering model (  UM) + (relativistic correction to WT term) Jido et al., PRC 66, (2002)

Is  exotic ? Naïve 3-quark picture is not likely Nucleon (1/2 + ) 940 MeV N(1535) (1/2 - ) 1535 MeV  (1/2 + ) 1116 MeV  (1405) (1/2 - ) 1405 MeV Radial excitation to L=1 costs  600 MeV  300 MeV

 UM-based calculation for  p     Nacher et al., PLB 455, 55 (1999) W=2.02 GeV

 in Lattice QCD Quench 3-quark  GeV Nemoto et al., PRD (2003) Quench 5-quark  GeV Ishii et al., PTP (2007) Full 3-quark  GeV Takahashi et al., PRD (2010) Full 3-quark  GeV Menadue et al., PRL (2012) (variational analysis) operator M 

 UM-based calculation for  p     Nacher et al., PLB 455, 55 (1999) Contact photo-production (WT term) + s-wave  UM rescattering

Nacher et al., PLB (1999) W=2.02 GeV Comparison with CLAS data K. Moriya et al. PRC (2013) Calculated line-shape is : wrong in ordering     and     Overestimate in magnitude

Contributions from mechanisms Small contribution from WT interference changed by subtraction const. Large contribution from contact terms short-range dynamics play important role