Functions CSLU 1100.003 Fall 2007 Cameron McInally Fordham University.

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved.
Advertisements

TECHNIQUES OF INTEGRATION
Form a Composite Functions and its Domain
Week 7 - Wednesday.  What did we talk about last time?  Set proofs and disproofs  Russell’s paradox.
Functions, Pigeonhole Principle Lecture 14: Nov 4 A B f( ) =
Functions Section 2.3 of Rosen Fall 2008
Relations and Functions CSRU Binary Relations A binary relation is a mapping between two sets as defined by a rule.
Terminology Domain: set which holds the values to which we apply the function Co-domain: set which holds the possible values (results) of the function.
Discrete Mathematics Lecture 7 Alexander Bukharovich New York University.
Terminology Domain: set which holds the values to which we apply the function Co-domain: set which holds the possible values (results) of the function.
Functions f( ) = A B Lecture 15: Nov 4.
7 INVERSE FUNCTIONS. The common theme that links the functions of this chapter is:  They occur as pairs of inverse functions. INVERSE FUNCTIONS.
1 Section 1.8 Functions. 2 Loose Definition Mapping of each element of one set onto some element of another set –each element of 1st set must map to something,
Chapter 7 Functions Dr. Curry Guinn. Outline of Today Section 7.1: Functions Defined on General Sets Section 7.2: One-to-One and Onto Section 7.3: The.
1 CMSC 250 Chapter 7, Functions. 2 CMSC 250 Function terminology l A relationship between elements of two sets such that no element of the first set is.
Section 1.8: Functions A function is a mapping from one set to another that satisfies certain properties. We will first introduce the notion of a mapping.
Functions A B f( ) =. This Lecture We will define a function formally, and then in the next lecture we will use this concept in counting. We will also.
Cardinality of Sets Section 2.5.
Relations & Functions CISC1400, Fall 2011 Fordham Univ.
FUNCTION Discrete Mathematics Asst. Prof. Dr. Choopan Rattanapoka.
Relations and Functions Another Foundational Concept Copyright © 2014 – Curt Hill.
1 1.6 Operations with Functions and Composition In this section, we will combine functions using the four basic operations: addition, subtraction, multiplication.
 Let A and B be any sets A binary relation R from A to B is a subset of AxB Given an ordered pair (x, y), x is related to y by R iff (x, y) is in R. This.
In previous sections we have been using calculators and graphs to guess the values of limits. Sometimes, these methods do not work! In this section we.
Foundations of Discrete Mathematics Chapter 3 By Dr. Dalia M. Gil, Ph.D.
Fall 2015 COMP 2300 Discrete Structures for Computation Donghyun (David) Kim Department of Mathematics and Physics North Carolina Central University 1.
1 Lecture 3 (part 3) Functions – Cardinality Reading: Epp Chp 7.6.
Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesFunctions.
Mathematics for Computing Lecture 8: Functions Dr Andrew Purkiss-Trew Cancer Research UK
1 Annoucement n Skills you need: (1) (In Thinking) You think and move by Logic Definitions Mathematical properties (Basic algebra etc.) (2) (In Exploration)
Functions Section 2.3 of Rosen Spring 2012 CSCE 235 Introduction to Discrete Structures Course web-page: cse.unl.edu/~cse235 Questions: Use Piazza.
Dr. Eng. Farag Elnagahy Office Phone: King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222.
Functions1 Elementary Discrete Mathematics Jim Skon.
Chapter 1 SETS, FUNCTIONs, ELEMENTARY LOGIC & BOOLEAN ALGEBRAs BY: MISS FARAH ADIBAH ADNAN IMK.
Functions Reading: Chapter 6 (94 – 107) from the text book 1.
Index FAQ Functions, properties. elementary functions and their inverses 2. előadás.
Agenda Week 10 Lecture coverage: –Functions –Types of Function –Composite function –Inverse of a function.
April 14, 2015Applied Discrete Mathematics Week 10: Equivalence Relations 1 Properties of Relations Definition: A relation R on a set A is called transitive.
INVERSE FUNCTIONS. Set X Set Y Remember we talked about functions--- taking a set X and mapping into a Set Y An inverse function.
Functions Section 2.3. Section Summary Definition of a Function. – Domain, Cdomain – Image, Preimage Injection, Surjection, Bijection Inverse Function.
11 DISCRETE STRUCTURES DISCRETE STRUCTURES UNIT 5 SSK3003 DR. ALI MAMAT 1.
11 DISCRETE STRUCTURES DISCRETE STRUCTURES UNIT 5 SSK3003 DR. ALI MAMAT 1.
1.8 Inverse functions My domain is your range No! My range is your domain.
More Quarter test review Section 4.1 Composite Functions.
Math 344 Winter 07 Group Theory Part 2: Subgroups and Isomorphism
7.8 Inverse Functions and Relations Horizontal line Test.
Functions (Mappings). Definitions A function (or mapping)  from a set A to a set B is a rule that assigns to each element a of A exactly one element.
College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson.
Lesson 1.5: Functions and Logarithms AP Calculus Mrs. Mongold.
CSNB 143 Discrete Mathematical Structures
1 Functions CS 202 Epp section ??? Aaron Bloomfield.
Chapter 7 – Radical Equations and Inequalities 7.2 – Inverse Functions and Relations.
FUNCTIONS COSC-1321 Discrete Structures 1. Function. Definition Let X and Y be sets. A function f from X to Y is a relation from X to Y with the property.
3.2 Inverse Functions. Functions A function maps each element in the domain to exactly 1 element in the range.
Functions CSRU1400 Spring 2008Ellen Zhang 1 CISC1400, Fall 2010 Ellen Zhang.
Discrete Mathematics Lecture # 19 Inverse of Functions.
Week 7 - Wednesday.  What did we talk about last time?  Proving the subset relationship  Proving set equality  Set counterexamples  Laws of set algebra.
1 Lecture 5 Functions. 2 Functions in real applications Curve of a bridge can be described by a function Converting Celsius to Fahrenheit.
Section 2.3. Section Summary  Definition of a Function. o Domain, Cdomain o Image, Preimage  One-to-one (Injection), onto (Surjection), Bijection 
Chapter 2 1. Chapter Summary Sets The Language of Sets - Sec 2.1 – Lecture 8 Set Operations and Set Identities - Sec 2.2 – Lecture 9 Functions and sequences.
1.6 Inverse Functions. Objectives Find inverse functions informally and verify that two functions are inverse functions of each other. Determine from.
REVIEW A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all x values.
Chapter 2 Sets and Functions.
Functions Section 2.3.
Function Compositions and Inverses
College Algebra Fifth Edition
Composition of Functions
Functions Section 2.3.
Presentation transcript:

Functions CSLU Fall 2007 Cameron McInally Fordham University

Functions Functions have 4 parts – Name : Usually one letter long. – Domain : A set of values – Codomain : Another set of values – Rule : Maps the values in the Domain set to the values in the Codomain set.

Functions Function definition This is read, “function f maps the elements of set A [a.k.a. domain] to the elements in set B [a.k.a. codomain].

Functions An example function definition: – Domain: {1, 2, 3} – Codomain: {5, 6, 7, 8} – Rule: {(1, 5), (2, 6), (3, 8)}

Functions Mapping values between sets Mapping values between sets – lasses/summer06/cseu1100/flash/ch4/ sec4_1/arrowdiagrams.html

Functions Rules can also be written in the following style – f(a) = a + 4 – g(b) = b * b + 2 – h(c) = 5 These would read – “f of a equals a plus 4” – “g of b equals b times b plus 2” – “h of c equals 5”

Functions When we see rules we often ask what their value might be when given concrete values. Take the formula from the previous page f(a) = a+4 What is its value when a equals 7? Answer: 11 Why? F(7) = = 11

Functions Try it… f(x) = 2x + 3 g(y) = 7 f(5) = f(8) = f(-4) = g(5) = g(8) = g(-4) =

Functions A function is a way that the three of the components (domain, codomain and rule) are related. A function takes a value from the domain, applies the transformation from the rule, and produces a value in the codomain. Let’s take a look…

Functions Suppose I define my domain to be {1, 2, 3} And I define my Codomain to be {5, 6, 7, 8} And my formula is f(x) =x + 5 Is this a function? – To find out, be very meticulous and walk through each value of the domain

Let me try the value 1. f(1) = 1+ 5 = 6 – Hey and 6 is in my Codomain. So far it’s working Let me try the value 2. f(2) = = 7 – 7 is in my Codomain. It is still working Let me try the value 3. f(3) = = 8 – 8 is in my Codomain. It is still working I have tried all values in my domain, and they all worked. Therefore this is a function Domain = {1, 2, 3} Codomain = {5, 6, 7, 8} f(x) = x + 5

Try this one, its almost identical. Taking 1 from the domain works Taking 2 from the domain works Taking 3 from the domain fails. – Why? It produces the value 8. This value is no longer part of my Codomain. So therefore this example is not a function Domain = {1, 2, 3} Codomain = {5, 6, 7} f(x) = x + 5

Ok, begin the same way (take values from the domain and put them in the formula) Choose 0. f(x) = 5 … it’s in the Codomain Choose 1. f(1) = 6 … it’s in the Codomain Choose -1. f(-1) = 4... it’s in the Codomain So, we can check all the values to see if this is a function!!! Domain = Z (all integers) Codomain = Z (all integers) f(x) = x + 5 So wrong! There are an infinite number of values.

Functions Sometimes you can’t try all values in the domain because its infinite. So you need to look for values that might not work and try those. If you can’t find any domain values that don’t work, can you make an argument that all the domain values do work? Sometimes proving the argument can make you millions of $$$. This one is up for grabs right now…

Hand waving – “Regardless of what integer I take from the domain, I can add 5 to that number and still have a value in the Codomain.” Convince yourself of this. Search the web for “Grand Hotel” by Hilbert. This story might be easier to understand. Thomas Aquinas attempted to prove the existence of God through a similar principle. Domain = Z (all integers) Codomain = Z (all integers) f(x) = x + 5

Ok choose some values – Choose 0: f(0) = – Choose 1: f(1) = – Choose -1: f(-1) = Domain = Z (all integers) Codomain = {4, 5, 6} f(x) = 6 6 … it works It always works… so it is a function

Functions Two properties of functions… – Functions can have up to two different and very interesting properties. A function can be onto A function can be one-to-one In order to have one of these properties, it first must be a function. If it is not a function than these properties are irrelevant

Functions Onto Functions – Each value in the Codomain can be produced by at least one value in the Domain. – Conversely, if a value in the Codomain cannot be produced by any value in the Domain, the function is not onto.

If you want to know whether this is onto first you have to figure out if it is a function or not. Choose 1: f(1) = 11 Choose 2: f(2) = 12 Choose 3: f(3) = 13 Choose 4: f(4) = 14 So it definitely is a function because every domain value took us to a value in the Codomain Is it onto? Yes. Because we covered all of the Codomain values in our computations. Domain = {1, 2, 3, 4} Codomain = {11, 12, 13, 14} f(x) = x + 10

Determine whether it is a function Choose 1: f(1) = 0 Choose 2: f(2) = 1 Choose 3: f(3) = 2 So it is a function. Is it onto? No, we never arrived at the value 3 which is in the Codomain Domain = {1, 2, 3,} Codomain = {0, 1, 2, 3} f(x) = x -1

Is it a function? Choose 1: f(1) = 5 Choose 2: f(2) = 5 Choose 3: f(3) = 5 So it is a function Is it onto? Yes. We reached every value in the Codomain Domain = {1, 2, 3,} Codomain = {5} f(x) = 5

Functions One-to-one functions – Only one value in the Domain can reach one particular value in the Codomain. – Conversely, if there are two values in the Domain that point to one value in the Codomain, then it is not a one-to-one function.

So we must ask if it is a function? Choose 1: f(1) = 2 Choose 2: f(2) = 3 Choose 3: f(3) = 4 So it is a function. Is it one-to-one? Well – we only reached the value 2 by using x = 1. – we only reached the value 3 by using x = 2. – we only reached the value 4 by using x = 3. So it is one-to-one Domain = {1, 2, 3,} Codomain = {1, 2, 3, 4} f(x) = x + 1

Is it a function? – Choose 1: f(1) = 5 – Choose 2: f(2) = 5 – Choose 3: f(3) = 5 Is it one-to-one? – No, because we reached the value 5 in three different ways. Domain = {1, 2, 3,} Codomain = {5} f(x) = 5

Is it a function? – f(-2) = 4 – f(-1) = 1 – f(0) = 0 – f(1) = 1 – f(2)=4 So it is a function Is it one-to-one? – No. We can reach the value 4 in two ways. Domain = {-2, -1, 0, 1, 2} Codomain = {0, 1, 2, 3, 4, 5, 6} f(x) = x*x

Is it a function? Is it onto? Is it one-to-one? If it has all of these properties then we call it a bijection. Any function that is a bijection has an inverse that we can compute. Domain = {2, 4, 6, 8} Codomain = {4, 8, 12, 16} f(x) = 2x

Functions The inverse of a function is another function that reverses the process of the original function. To create an inverse 1.Make the old Codomain the new domain 2.Make the old domain the new Codomain 3.Swap the f(x) and the x in the formula 4.Use algebra to get the f(x) back by itself

1.New domain = {4, 8, 12, 16} 2.New Codomain = {2, 4, 6, 8} 3.To compute the new formula reverse the f(x) and the x x = 2f(x) 4.Then solve for f(x) Domain = {2, 4, 6, 8} Codomain = {4, 8, 12, 16} f(x) = 2x f(x) = x / 2 … so that is our inverse

Functions Function Composition ( ) – Chains together two functions. – f ◦ g which reads “f compose g”. – The result of the second function is passed as the argument to the first function.

What is f ◦ g ? What is g ◦ f? What is f ◦ f? What is g ◦ g ? What is f ◦ g for g(2)? Assume we have two functions with Domains and Codomains over all integers… f(x) = 3x – 2 g(x) = x * x f(x*x) = 3(x*x)-2 = 3x 2 -2 g(3x-2) = (3x-2)*(3x-2)=9x 2 -12x+4 f(3x-2) = 3(3x-2)-2 = 9x-8 g(x*x) = (x*x) * (x*x) = x 4 f(g(2)) = f(4) = 3(4) – 2 = 10 f(g(2)) = f(4) = 3(4) – 2 = 10

Always Due in One Week Homework (Always Due in One Week) Read Section 7.1 to Complete Section 7.8 pages 137- : 1 (a-e), 2(a-d) Functions