Generalized pairing models, Saclay, June 2005 Generalized models of pairing in non-degenerate orbits J. Dukelsky, IEM, Madrid, Spain D.D. Warner, Daresbury,

Slides:



Advertisements
Similar presentations
A brief introduction D S Judson. Kinetic Energy Interactions between of nucleons i th and j th nucleons The wavefunction of a nucleus composed of A nucleons.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Spectroscopy at the Particle Threshold H. Lenske 1.
Isospin symmetry, Saclay, April 2011 Measuring isospin mixing from E1 and E2 transitions P. Van Isacker, GANIL, France Isospin mixing from E1 transitions.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetry Approach to Nuclear Collective Motion II P. Van Isacker, GANIL, France Symmetry and dynamical.
14-18 June 2005 International Conference on Finite Fermi Systems: Nilsson Model 50 years, Lund, Sweden Stuart Pittel Bartol Research Institute, University.
Cooper pairs and BCS ( ) Richardson exact solution (1963). Ultrasmall superconducting grains (1999). SU(2) Richarson-Gaudin models (2000). Cooper.
Cooper pairs and BCS ( ) Richardson exact solution (1963). Ultrasmall superconducting grains (1999). SU(2) Richardson-Gaudin models (2000). Cooper.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Nucleon-pair transfer-intensities nuclear shape-phase transitions
ISOLDE workshop, CERN, November 2008 Correlations between nuclear masses, radii and E0 transitions P. Van Isacker, GANIL, France Simple nuclear mass formulas.
Single Particle Energies
I. Bentley and S. Frauendorf Department of Physics University of Notre Dame, USA Calculation of the Wigner Term in the Binding Energies by Diagonalization.
Nuclear models. Models we will consider… Independent particle shell model Look at data that motivates the model Construct a model Make and test predictions.
CEA Bruyères-le-Châtel Kazimierz sept 2005, Poland Variational Multiparticle-Multihole Mixing with the D1S Gogny force N. Pillet (a), J.-F. Berger (a),
Masses (Binding energies) and the IBA Extra structure-dependent binding: energy depression of the lowest collective state.
Nuclei with more than one valence nucleon Multi-particle systems.
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Outline  Simple comments on regularities of many-body systems under random interactions  Number of spin I states for single-j configuration  J-pairing.
Quantum Monte-Carlo for Non-Markovian Dynamics Collaborator : Denis Lacroix Guillaume Hupin GANIL, Caen FRANCE  Exact  TCL2 (perturbation)  TCL4  NZ2.
Atomic Orbitals, Electron Configurations, and Atomic Spectra
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Statistical properties of nuclei: beyond the mean field Yoram Alhassid (Yale University) Introduction Beyond the mean field: correlations via fluctuations.
Even-even nuclei odd-even nuclei odd-odd nuclei 3.1 The interacting boson-fermion model.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Mean-Field Description of Heavy Neutron-Rich Nuclei P. D. Stevenson University of Surrey NUSTAR Neutron-Rich Minischool Surrey, 2005.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Isospin and mixed symmetry structure in 26 Mg DONG Hong-Fei, BAI Hong-Bo LÜ Li-Jun, Department of Physics, Chifeng university.
1 Proton-neutron pairing by G-matrix in the deformed BCS Soongsil University, Korea Eun Ja Ha Myung-Ki Cheoun.
Nuclear Models Nuclear force is not yet fully understood.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Role of vacuum in relativistic nuclear model A. Haga 1, H. Toki 2, S. Tamenaga 2 and Y. Horikawa 3 1. Nagoya Institute of Technology, Japan 2. RCNP Osaka.
IAEA Workshop on NSDD, Trieste, November 2003 The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons.
Partial dynamical symmetries in Bose-Fermi systems* Jan Jolie, Institute for Nuclear Physics, University of Cologne What are dynamical symmetries? Illustration.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Shell Model with residual interactions – mostly 2-particle systems Start with 2-particle system, that is a nucleus „doubly magic + 2“ Consider two identical.
Variational multiparticle-multihole configuration mixing approach
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Partial Dynamical Symmetry in Odd-Mass Nuclei A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel P. Van Isacker, J. Jolie,
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Q UANTUM CHAOS IN THE COLLECTIVE DYNAMICS OF NUCLEI Pavel Cejnar, Pavel Stránský, Michal Macek DPG Frühjahrstagung, Bochum 2009, Germany Institute.
Interacting boson model s-bosons (l=0) d-bosons (l=2) Interpretation: “nucleon pairs with l = 0, 2” “quanta of collective excitations” Dynamical algebra:
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
On Solutions of the one-dimensional Holstein Model Feng Pan and J. P. Draayer Liaoning Normal Univ. Dalian China 23rd International Conference on.
Exactly Solvable gl(m/n) Bose-Fermi Systems Feng Pan, Lianrong Dai, and J. P. Draayer Liaoning Normal Univ. Dalian China Recent Advances in Quantum.
Correlations in Structure among Observables and Enhanced Proton-Neutron Interactions R.Burcu ÇAKIRLI Istanbul University International Workshop "Shapes.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
XXIII DGMTP, China 2005 On the Physical Significance of q Deformation in Many-body Physics J. P. Draayer, K. D. Sviratcheva, C. Bahri and A. I. Georgieva.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
g-ray spectroscopy of the sd-shell hypernuclei
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Relativistic descriptions of Nuclear magnetic moments Jie Meng 孟 杰 北京航空航天大学物理与核能工程学院 School of Physics and Nuclear Energy Engineering Beihang University.
The role of isospin symmetry in medium-mass N ~ Z nuclei
Open quantum systems.
Structure and dynamics from the time-dependent Hartree-Fock model
Isovector and isoscalar pairing in low-lying states of N = Z nuclei
Nuclear Chemistry CHEM 396 Chapter 4, Part B Dr. Ahmad Hamaed
Sevdalina S. Dimitrova Institute for Nuclear Research & Nuclear Energy
Kazuo MUTO Tokyo Institute of Technology
Presentation transcript:

Generalized pairing models, Saclay, June 2005 Generalized models of pairing in non-degenerate orbits J. Dukelsky, IEM, Madrid, Spain D.D. Warner, Daresbury, United Kingdom A. Frank, UNAM, Mexico P. Van Isacker, GANIL, France Symmetries of pairing models Generalized pairing models Deuteron transfer

Generalized pairing models, Saclay, June 2005 The nuclear shell model Mean field plus residual interaction (between valence nucleons). Assume a simple mean-field potential: Contains –Harmonic-oscillator potential with constant . –Spin-orbit term with strength  ls. –Orbit-orbit term with strength  ll.

Generalized pairing models, Saclay, June 2005 Shell model for complex nuclei Solve the eigenvalue problem associated with the matrix (n active nucleons): Methods of solution: –Diagonalization (Lanczos): d~10 9. –Monte-Carlo shell model: d~ –Density Matrix Renormalization Group: d~ ?

Generalized pairing models, Saclay, June 2005 Symmetries of the shell model Three bench-mark solutions: –No residual interaction  IP shell model. –Pairing (in jj coupling)  Racah’s SU(2). –Quadrupole (in LS coupling)  Elliott’s SU(3). Symmetry triangle:

Generalized pairing models, Saclay, June 2005 Racah’s SU(2) pairing model Assume pairing interaction in a single-j shell: Spectrum 210 Pb:

Generalized pairing models, Saclay, June 2005 Solution of the pairing hamiltonian Analytic solution of pairing hamiltonian for identical nucleons in a single-j shell: Seniority  (number of nucleons not in pairs coupled to J=0) is a good quantum number. Correlated ground-state solution (cf. BCS). G. Racah, Phys. Rev. 63 (1943) 367

Generalized pairing models, Saclay, June 2005 Nuclear “superfluidity” Ground states of pairing hamiltonian have the following correlated character: –Even-even nucleus (  =0): –Odd-mass nucleus (  =1): Nuclear superfluidity leads to –Constant energy of first 2 + in even-even nuclei. –Odd-even staggering in masses. –Smooth variation of two-nucleon separation energies with nucleon number. –Two-particle (2n or 2p) transfer enhancement.

Generalized pairing models, Saclay, June 2005 Two-nucleon separation energies Two-nucleon separation energies S 2n : (a) Shell splitting dominates over interaction. (b) Interaction dominates over shell splitting. (c) S 2n in tin isotopes.

Generalized pairing models, Saclay, June 2005 Integrability of pairing hamiltonian A.K. Kerman, Ann. Phys. (NY) 12 (1961) 300 Pair operators (several shells): The pairing hamiltonian for degenerate shells … is solvable by virtue of an underlying SU(2) “quasi-spin” symmetry:

Generalized pairing models, Saclay, June 2005 Generalized pairing model Hamiltonian for pairing interaction in non- degenerate shells: Is the pairing model with non-degenerate orbits integrable?

Generalized pairing models, Saclay, June 2005 Richardson-Gaudin models R.W. Richardson, Phys. Lett. 5 (1963) 82 M. Gaudin, J. Phys. (Paris) 37 (1976) Algebraic structure: The Gaudin operators …commute if X ij and Y ij are antisymmetric and satisfy the equations  Any combination of R i is integrable.

Generalized pairing models, Saclay, June 2005 Pairing with non-degenerate orbits J. Dukelsky et al., Phys. Rev. Lett. 87 (2001) If we choose  A hamiltonian for pairing in non-degenerate shells is integrable! Solution:

Generalized pairing models, Saclay, June 2005 Pairing with neutrons and protons For neutrons and protons two pairs and hence two pairing interactions are possible: –Isoscalar (S=1,T=0): –Isovector (S=0,T=1):

Generalized pairing models, Saclay, June 2005 Neutron-proton pairing hamiltonian A hamiltonian with two pairing interactions …has an SO(8) algebraic structure. V pairing is integrable and solvable (dynamical symmetries) for g 0 =0, g 0 =0 and g 0 =g 0.

Generalized pairing models, Saclay, June 2005 SO(8) “quasi-spin” formalism A closed algebra is obtained with the pair operators S ± with in addition This set of 28 operators forms the Lie algebra SO(8) with subalgebras B.H. Flowers & S. Szpikowski, Proc. Phys. Soc. 84 (1964) 673

Generalized pairing models, Saclay, June 2005 Solvable limits of the SO(8) model Pairing interactions can expressed as follows: Symmetry lattice of the SO(8) model:  Analytic solutions for g 0 =0, g 0 =0 & g 0 =g 0.

Generalized pairing models, Saclay, June 2005 Quartetting in N=Z nuclei T=0 and T=1 pairing has a quartet structure with SO(8) symmetry. Pairing ground state of an N=Z nucleus:  Condensate of “  -like” objects. Observations: –Isoscalar component in condensate survives only in N~Z nuclei, if anywhere at all. –Spin-orbit term reduces isoscalar component.

Generalized pairing models, Saclay, June 2005 Generalized neutron-proton pairing Hamiltonian for pairing interactions in non- degenerate shells: Solution techniques: –Richardson-Gaudin for SO(8) model. –Boson mappings: requiring same commutation relations; associating state vectors.

Generalized pairing models, Saclay, June 2005 Generalized pairing models J. Dukelsky et al., to be published Pairing in degenerate orbits between identical particles has SU(2) symmetry. Richardson-Gaudin models can be generalized to higher-rank algebras:

Generalized pairing models, Saclay, June 2005 Example: SO(5) pairing Hamiltonian: “Quasi-spin” algebra is SO(5) (rank 2). Example: 64 Ge in pfg 9/2 shell (d~9  ). S. Dimitrova, unpublished

Generalized pairing models, Saclay, June 2005 Model with L=0 vector bosons Correspondence: Algebraic structure is U(6). Symmetry lattice of U(6): Boson mapping is exact in the symmetry limits [for fully paired states of the SO(8)]. P. Van Isacker et al., J. Phys. G 24 (1998) 1261

Generalized pairing models, Saclay, June 2005 Masses of N~Z nuclei Neutron-proton pairing hamiltonian in non- degenerate shells: H F maps into the boson hamiltonian: H B describes masses of N~Z nuclei. E. Baldini-Neto et al., Phys. Rev. C 65 (2002)

Generalized pairing models, Saclay, June 2005 Two-nucleon transfer Amplitude for two-nucleon transfer in the reaction  A+a  B+b: Nuclear-structure information contained in G N (L,S,J) which for L=0 transfer reduces to N.K. Glendenning, Direct Nuclear Reactions

Generalized pairing models, Saclay, June 2005 Deuteron transfer Overlap of uncorrelated pair: Bosons correspond to correlated pairs: Scale property: P. Van Isacker et al., Phys. Rev. Lett. 94 (2005)

Generalized pairing models, Saclay, June 2005 Deuteron transfer with bosons Correspondence does not take account of Pauli principle. The following correspondence is shown to be exact [in the Wigner limit]: –Even-even  odd-odd –Odd-odd  even-even

Generalized pairing models, Saclay, June 2005 Masses of pf-shell nuclei Boson hamiltonian: Rms deviation is 306 (or 254) keV. Parameter ratio: b/a  5.

Generalized pairing models, Saclay, June 2005 Deuteron transfer in N=Z nuclei Deuteron-transfer intensity c T 2 calculated in sp-boson IBM based on SO(8). Ratio b/a fixed from masses in lower half of shell.