November 29-30, 2001 LIGO-G010415-00-Z Talk at PAC-11, LHO 1 Proposal Thermal and Thermoelastic Noise Research for Advanced LIGO Optics Norio Nakagawa.

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

T1 task- update Mike Plissi. 2 Collaboration Groups actively involved INFN-VIRGO MAT IGR-Glasgow Groups that have expressed interest INFN-AURIGA CNRS-LKB.
1 Test Mass Suspensions for AIGO Ben Lee The University of Western Australia.
G R LIGO Laboratory1 Advanced LIGO Research and Development David Shoemaker LHO LSC 11 November 2003.
Transportation of Ultra-Stable Light via Optical Fiber Emily Conant Bard College, California Institute of Technology Mentors: Evan Hall, Rana Adhikari,
Adaptive Optics for Wavefront Correction of High Average Power Lasers Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Dublin/July'04 1 BLTS interferometers: Big, Low-temperature Transparent Silicon Interferometers Warren Johnson Louisiana State University LIGO-G Z.
Substrate mechanical loss studies Sheila Rowan (Stanford University) for: LIGO Laboratory (Caltech, MIT, LLO, LHO) LSC Partners (University of Glasgow,
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
FE model implementation of seismically driven GG noise in subterranean gravitational wave detectors David Rabeling, Eric Hennes, and Jo van den Brand
Thermal noise issues Chinyere Ifeoma Nwabugwu Louisiana State University August 05, 2005 Eric Black, Akira Villar, Kenneth G. Libbrecht, Kate Dooley, Royal.
1 Kazuhiro Yamamoto Istituto Nazionale di Fisica Nucleare Sezione di Padova Substrate thermoelastic noise and thermo-optic noise at low temperature in.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Thermal Noise from Coatings Gregg Harry; Andri Gretarsson, Scott Kittelberger, Steve Penn, Peter Saulson; Marty Fejer, Eric Gustafson, Roger Route, Sheila.
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.
Advanced interferometers for astronomical observations Lee Samuel Finn Center for Gravitational Wave Physics, Penn State.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
LIGO Surf Project Q Of the Thermal Noise Interferometer Adam Bushmaker Mentor: Dr. Eric Black LIGO-G D.
LIGO-G Z Thermal noise in sapphire - summary and plans Work carried out at: Stanford University University of Glasgow Caltech MIT.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
Virgo-Material “macro” group M.Punturo. VIRGO-MAT2 VIRGO-MAT components Virgo-MAT is composed by three INFN groups –Firenze/Urbino M.Lorenzini, G.Losurdo,
LIGO LaboratoryLIGO-G R Coatings and Their Influence on Thermal Lensing and Compensation in LIGO Phil Willems Coating Workshop, March 21, 2008,
1 Reducing Thermoelastic Noise by Reshaping the Light Beams and Test Masses Research by Vladimir Braginsky, Sergey Strigin & Sergey Vyatchanin [MSU] Erika.
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
Parametric Instabilities In Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras David Blair.
Coating Program Update Gregory Harry LIGO/MIT on behalf of the Coating Working Group March 22, 2006 LSC Meeting – LHO G R.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Status of Modeling of Damage Effects on Final Optics Mirror Performance T.K. Mau, M.S. Tillack Center for Energy Research Fusion Energy Division University.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
LIGO-G M LIGO Status Gary Sanders GWIC Meeting Perth July 2001.
G R LIGO’s Ultimate Astrophysical Reach Eric Black LIGO Seminar April 20, 2004 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht.
Equivalence relation between non spherical optical cavities and application to advanced G.W. interferometers. Juri Agresti and Erika D’Ambrosio Aims of.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
The importance of Coatings for Interferometric Gravitational Wave Observatories Riccardo DeSalvo for the Coating group
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Progress in LIGO Coating Development Gregory Harry Massachusetts Institute of Technology - LIGO Laboratory - March 21, 2008 Coating Workshop - Caltech.
Aspen Flat Beam Profile to Depress Thermal Noise J.Agresti, R. DeSalvo LIGO-G Z.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO-G R 1 Gregory Harry and COC Working Group Massachusetts Institute of Technology - Technical Plenary Session - March 17-20, 2003 LSC Meeting.
Estimating thermo-optic noise from AdLIGO coatings Embry-Riddle Andri M. Gretarsson DCC#: G Z.
LIGO-G Z 1 Report of the Optics Working Group to the LSC David Reitze University of Florida March 20, 2003.
Optical Coatings for Gravitational Wave Detection Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration - August.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Where is the change in refractive index of the glass, and is the change in temperature due to heating. The relative phase change due to asymetric heating.
Hiro Yamamoto LVC March 15 th, 2016, Pasadena CA LIGO-G Mirror scattering loss analysis by integrating sphere measurement  Scattering and loss.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Ab Initio Property Prediction with Density Functional Theory (DFT) Relevant to Coating Thermal Noise Laser Interferometer Gravitational-Wave Observatory.
Deep Chatterjee IISER Kolkata Mentors: Koji Arai; Matthew Abernathy
Interferometer configurations for Gravitational Wave Detectors
A look at interferometer topologies that use reflection gratings
Mechanical Loss in Silica substrates
Topology comparison RSE vs. SAGNAC using GWINC
Thermal noise calculations for cryogenic optics
Synopsis by Maria Ruiz-Gonzalez 12/8/16
S. Rowan, M. Fejer, E. Gustafson, R. Route, G. Zeltzer
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
Overview of Advanced LIGO Coating Status
LIGO Scientific Collaboration
Modeling of Advanced LIGO with Melody
Test Mass Suspensions for AIGO
Presentation transcript:

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 1 Proposal Thermal and Thermoelastic Noise Research for Advanced LIGO Optics Norio Nakagawa Center for Nondestructive Evaluation Iowa State University in collaboration with E.K. Gustafson and M.M. Fejer Ginzton Laboratory, Stanford University

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 2 Outline Objective and Approach Output of the Prior NSF Support –Laser phase noise formulas for optical resonator and delay line –Coating noise estimation Proposed Work –Coating noise studies for mirrors of edge geometry –Thermo-elastic noise of coated mirrors –Thermal & thermo-elastic noises of realistic mirror designs Tasks & Time Lines Summary (Broader Impacts)

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 3 Objective and Approach Objectives To develop laser-phase-noise formulas –Green’s-function-based –Analytical and computational –two-point laser-phase-fluctuation correlations –complex test mass objects. To extend the noise estimation method to thermo-elastic noises. To estimate thermal and thermo- elastic noises of coated mirrors for advanced LIGO designs. To examine merits of interferometer design options for future LIGO. Approaches Calculate phase noise via Green’s function method –Elasticity –Thermo-elasticity & thermal diffusion Analytical mirror models –Half space –Quarter space –Thin coating layer Numerical calculations –Realistic mirror shapes –Coating loss –Delay-line vs. Fabry Perot

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 4 Output to Date Publications –N. Nakagawa, Eric Gustafson, P. Beyersdorf and M. M. Fejer “Estimating the off resonance thermal noise in mirrors, Fabry-Perot interferometers and delay-lines: the half infinite mirror with uniform loss,” to appear in Phys. Rev. D –N. Nakagawa, A. M. Gretarsson, E.K. Gustafson, and M. M. Fejer, “Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror,” submitted to Phys. Rev. D –N. Nakagawa, E.K. Gustafson, and M. M. Fejer, “Thermal phase noise estimations for fabry-perot and delay-line interferometers using coated mirrors,” in preparation. –D. Crooks, et al., “Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors,” submitted to Classical and Quantum Gravity. –Gregory M. Harry, et al., “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” submitted to Classical and Quantum Gravity.

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 5 Phase-Noise Correlation Requirement –Compute laser phase noise correlation Ex. Coating noise model

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 6 Intrinsic Thermal Noise Phase Noise Formula

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 7 Fluctuation-Dissipation Relation Surface Force density  Strain Laudau-Lifshitz

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 8 Various Optical Configurations Phase noise formulas Computed explicitly for –Single-reflection mirror –Fabry-Perot resonator –Optical delay line

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 9 Fabry-Perot vs. Delay Line Fabry-Perot vs Delay lines –Analytical half-space mirror model –Fabry-Perot interferometer vs several delay lines –Storage time as proposed for LIGO II. –Delay line beam centers evenly spaced on a circle When the spots are not overlapping appreciably, the delay line is less noisy than the Fabry-Perot. –Noise levels are similar if the spot circle radii comparable to the beam spot size the spots are largely overlapping, and above several hundred Hertz. Figure 1: Comparison of the phase noise from a delay-line and a Fabry-Perot interferometer. The solid curve (1) is for a 4 km Fabry-Perot interferometer with an input mirror power reflectivity of RI=0.97 and an end mirror power reflectivity of RE=1.00. Curves 2, 3, 4, 5 and 6 correspond to 4 km delay lines all with 130 spots on the end mirror and laser beam spots of 1/e field radius w in a pattern with their centers on a circles of radius R=w/3 (2), R=2w/3 (3), R=5w/2 (4), R=10w (5) and R=20w (6) where w=3.5 cm, the spot size used for both mirrors of the Fabry-Perot interferometer. The mirror Q is assumed to be 3´108 and the material properties are those of Sapphire E=71.8 GPa and s=0.16 however we are treating sapphire as isotropic for the purpose of this illustration and assuming a single loss function.

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 10 Coating Noise; Problem Statement Coating noise model –Based on half-space mirror model a lossy layer (thickness d ) on a lossy host material –Requirement: Compute laser phase noise correlation –Approach: via analytical Green’s function

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 11 Coating Noise Static Green’s function for layer-on-substrate where D. M. Burmister, J. Appl. Phys. 16, 89-94, 1945.

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 12 Coating Noise Intrinsic Thermal Phase-Noise Estimation

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 13 Coating Noise Resonator Delay lines

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 14

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 15

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 16 Proposed Work Edge effects on coated mirror noise –Analytical quarter-space model Extension to thermo-elastic noise –Coated mirrors –Delay-line interferometers –Mirrors at low temperatures Thermal & thermo-elastic noises –Mirrors of realistic shapes Numerical Green’s function calculation

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 17 Quarter-Space Mirror Model Edge effects on noise calculation –Analytical model 

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 18 Quarter-Space Mirror Model (con’t) Finite-mirror size effect on thermal noise (scalar model)

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 19 Thermo-elasticity & Thermal diffusion From previous identification If the adiabatic condition holds

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 20 Numerical elasticity Noise study: Cylindrical mirrors –Numerical Green’s function computation Betti-Rayleigh-Somigliana formula Nodal discretization by the boundary element method. –Cylindrical mirror model Single reflection Fabry-Perot Delay-line –Demonstrate the delay-line vs. resonator assertion –Effects of mirror aspect ratios.

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 21 Static Elasticity Needs to avoid rigid-body motions –Mass and moment of inertia –Given surface forces f can be counter- balanced by volume forces where

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 22 Tasks & Time Lines Task3/31/20033/31/20043/31/2005 T1 T2 T3 T4 T5 T6,T7,T8 T1. Coating noise estimation –spatial de-correlation T2. Numerical noise estimations –Realistic mirror shapes –Validation T3. Quarter space –Analytical model –Finite size effect T4. Thermo-elastic noise estimation –delay-line vs. resonator –coating T5. Quarter space II –coating T6. Anisotropy effects T7. Dielectric loss study T8. Off-beam-axis scatterings

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 23 Summary Accomplishments Obtained two-point phase noise correlation formulas –Resonator –Delay line –Delay lines can be quieter Given coating noise formulas –Relative magnitudes between coating and substrate noises. –Their behaviors against the beam size and other optical parameters Proposed Activities Studies of intrinsic noises of coated mirrors –Thermal noise –Thermo-elastic noise –Relative significance of coating noise –Realistic mirror shapes

November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 24 Broader Impacts Education –Student involvement through the collaboration with Stanford Group Contribution to LSC –The thermal noise estimation methodology –Impact on sorting out advanced optics designs –Impact on mirror material selection Impacts on other federally funded programs –Through advancement of computational physics methodology NSF Industry/University Cooperative Research Center program DOE/NERI project; “On-line NDE for advanced reactors”