Section 11 Direct Products and Finitely Generated Abelian Groups One purpose of this section is to show a way to use known groups as building blocks to.

Slides:



Advertisements
Similar presentations
Mathematics of Cryptography Part II: Algebraic Structures
Advertisements

Study Guides Quantitative - Arithmetic - Numbers, Divisibility Test, HCF and LCM Mycatstudy.com.
5.1 Number Theory. The study of numbers and their properties. The numbers we use to count are called the Natural Numbers or Counting Numbers.
1 Section 2.4 The Integers and Division. 2 Number Theory Branch of mathematics that includes (among other things): –divisibility –greatest common divisor.
Chapter Primes and Greatest Common Divisors ‒Primes ‒Greatest common divisors and least common multiples 1.
Basic properties of the integers
Math 3121 Abstract Algebra I
Cyclic Groups Part 2.
Classification of Groups of Order 24
1.  Detailed Study of groups is a fundamental concept in the study of abstract algebra. To define the notion of groups,we require the concept of binary.
CSE115/ENGR160 Discrete Mathematics 03/15/11
Chapter II. THE INTEGERS
Find all subgroups of the Klein 4- Group. How many are there?
Cyclic Groups. Definition G is a cyclic group if G = for some a in G.
Properties of the Integers: Mathematical Induction
Chapter Number Theory 4 4 Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
The Integers and Division
Section 5.1 Number Theory.
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 3 (Part 2): The Fundamentals: Algorithms, the.
1 Properties of Integers Objectives At the end of this unit, students should be able to: State the division algorithm Apply the division algorithm Find.
Quantitative - Arithmetic - Numbers, Divisibility Test, HCF and LCM
GROUPS & THEIR REPRESENTATIONS: a card shuffling approach Wayne Lawton Department of Mathematics National University of Singapore S ,
External Direct Products (11/4) Definition. If G 1, G 2,..., G n are groups, then their external direct product G 1  G 2 ...  G n is simply the set.
Finite Groups & Subgroups. Order of a group Definition: The number of elements of a group (finite or infinite) is called its order. Notation: We will.
Numbers, Operations, and Quantitative Reasoning.
Number Theory.  A prime number is a natural number greater than 1 that has exactly two factors (or divisors), itself and 1.  Prime numbers less than.
Lagrange's Theorem. The most important single theorem in group theory. It helps answer: –How large is the symmetry group of a volleyball? A soccer ball?
Groups Definition A group  G,  is a set G, closed under a binary operation , such that the following axioms are satisfied: 1)Associativity of  :
SECTION 3 ISOMORPHIC BINARY STRUCTURES Definition Let  S,  and  S’,  ’  be binary algebraic structures. An isomorphism of S with S’ is a one-to-one.
Set, Combinatorics, Probability & Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS Slides Set,
The Integers. The Division Algorithms A high-school question: Compute 58/17. We can write 58 as 58 = 3 (17) + 7 This forms illustrates the answer: “3.
Cyclic Groups (9/25) Definition. A group G is called cyclic if there exists an element a in G such that G =  a . That is, every element of G can be written.
Math 3121 Abstract Algebra I Lecture 9 Finish Section 10 Section 11.
Great Theoretical Ideas in Computer Science for Some.
Copyright © 2009 Pearson Education, Inc. Chapter 5 Section 1 - Slide 1 Chapter 1 Number Theory and the Real Number System.
Chapter 2 (Part 1): The Fundamentals: Algorithms, the Integers & Matrices The Integers and Division (Section 2.4)
Math 3121 Abstract Algebra I Lecture 5 Finish Sections 6 + Review: Cyclic Groups, Review.
Math 3121 Abstract Algebra I Lecture 10 Finish Section 11 Skip 12 – read on your own Start Section 13.
Math 344 Winter 07 Group Theory Part 1: Basic definitions and Theorems.
UNIT - 2.  A binary operation on a set combines two elements of the set to produce another element of the set. a*b  G,  a, b  G e.g. +, -, ,  are.
Cyclic Groups A Cyclic Group is a group which can be generated by one of its elements. That is, for some a in G, G={a n | n is an element of Z} Or, in.
Questions on Direct Products (11/6) How many elements does D 4  Z 4 have? A. 4B. 8C. 16D. 32E. 64 What is the largest order of an element in D 4  Z 4.
Slide Copyright © 2009 Pearson Education, Inc. Unit 1 Number Theory MM-150 SURVEY OF MATHEMATICS – Jody Harris.
Greatest Common Divisors & Least Common Multiples  Definition 4 Let a and b be integers, not both zero. The largest integer d such that d|a and d|b is.
Section 14 Factor Groups Factor Groups from Homomorphisms. Theorem Let  : G  G’ be a group homomorphism with kernel H. Then the cosets of H form a factor.
CS Lecture 14 Powerful Tools     !. Build your toolbox of abstract structures and concepts. Know the capacities and limits of each tool.
Direct Proof and Counterexample III
SECTION 9 Orbits, Cycles, and the Alternating Groups Given a set A, a relation in A is defined by : For a, b  A, let a  b if and only if b =  n (a)
Math 3121 Abstract Algebra I Lecture 14 Sections
SECTION 8 Groups of Permutations Definition A permutation of a set A is a function  ϕ : A  A that is both one to one and onto. If  and  are both permutations.
SECTION 10 Cosets and the Theorem of Lagrange Theorem Let H be a subgroup of G. Let the relation  L be defined on G by a  L b if and only if a -1 b 
Great Theoretical Ideas in Computer Science.
Divisibility and Modular Arithmetic
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 2 The Fundamentals: Algorithms,
Multiplicative Group The multiplicative group of Z n includes every a, 0
Group A set G is called a group if it satisfies the following axioms. G 1 G is closed under a binary operation. G 2 The operation is associative. G 3 There.
Prepared By Meri Dedania (AITS) Discrete Mathematics by Meri Dedania Assistant Professor MCA department Atmiya Institute of Technology & Science Yogidham.
Math 3121 Abstract Algebra I Lecture 6 Midterm back over+Section 7.
Chapter 3 The Fundamentals: Algorithms, the integers, and matrices Section 3.4: The integers and division Number theory: the part of mathematics involving.
Agenda Review:  Relation Properties Lecture Content:  Divisor and Prime Number  Binary, Octal, Hexadecimal Review & Exercise.
Math 3121 Abstract Algebra I
Direct Proof and Counterexample III: Divisibility
Great Theoretical Ideas In Computer Science
Section 5.1 Number Theory.
Math 3121 Abstract Algebra I
Chapter 8: External Direct Product
Great Theoretical Ideas in Computer Science
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
From the last time: gcd(a, b) can be characterized in two different ways: It is the least positive value of ax + by where x and y range over integers.
Presentation transcript:

Section 11 Direct Products and Finitely Generated Abelian Groups One purpose of this section is to show a way to use known groups as building blocks to form more groups. Definition: The Cartesian product of sets S 1, S 2, …,S n is the set of all ordered n- tuples (a 1, a 2, …,a n ), where a i  S i for i=1, 2, …, n. The Cartesian product is denoted by either S 1  S 2  …  S n or by

Theorem Let G 1, G 2, …,G n be groups. For (a 1, a 2, …,a n ) and (b 1, b 2, …,b n ) in, Define (a 1, a 2, …,a n )(b 1, b 2, …,b n ) to be the element (a 1 b 1, a 2 b 2, …,a n b n ). Then is a group, the direct product of the groups G i, under this binary operation. Proof: exercise. Note: In the event that the operation of each G i is commutative, we sometimes use additive notation in and refer to as the direct sum of the groups G i. If the S i has r i elements for i=1, …,n, then has r 1 r 2,…,r n elements.

Example Example: Determine if Z 2  Z 3 is cyclic. Solution: | Z 2  Z 3 |=6 and Z 2  Z 3 = {(0, 0),(0, 1),(0, 2),(1, 0),(1, 1),(1, 2)}. Here the operations in Z 2,, Z 3 are written additively. We can check that (1, 1) is the generator, so Z 2  Z 3 is cyclic. Hence Z 2  Z 3 is isomorphic to Z 6. (there is, up to isomorphism, only one cyclic group structure of a given order.) Example: Determine if Z 3  Z 3 is cyclic. Solution: We claim Z 3  Z 3 is not cyclic. |Z 3  Z 3 |=9, but every element in Z 3  Z 3 can only generate three elements. So there is no generator for Z 3  Z 3. Hence Z 3  Z 3 is not isomorphic to Z 9. Similarly, Z 2  Z 2 is not cyclic, Thus Z 2  Z 2 must be isomorphic to Z 6.

Theorem The group Z m  Z n is cyclic and is isomorphic to Z mn if and only if m and n are relatively prime, that is, the gcd of m and n is 1. Corollary The group is cyclic and isomorphic to Z m1m2..mn if and only if the numbers for i =1, …, n are such that the gcd of any two of them is 1.

Example The previous corollary shows that if n is written as a product of powers of distinct prime numbers, as in Then Z n is isomorphic to Example: Z 72 is isomorphic to Z 8  Z 9.

Least Common Multiple Definition Let r 1 r 2,…,r n be positive integers. Their least common multiple (lcm) is the positive integer of the cyclic group of all common multiples of the r i, that is, the cyclic group of all integers divisible by each r i for i=1, 2, …, n. Note: from the definition and the work on cyclic groups, we see that the lcm of r 1 r 2,…,r n is the smallest positive integer that is a multiple of each r i for i=1, 2, …, n, hence the name least common multiple.

Theorem Let (a 1, a 2, …,a n ) . If a i is of finite order r i in G i, then the order of (a 1, a 2, …,a n ) in is equal to the least common multiple of all the r i.

Example Example: Find the order of (8, 4, 10) in the group Z 12  Z 60  Z 24. Solution: The order of 8 in Z 12 is 12/gcd(8, 12)=3, the order of 4 in Z 60 is 60/gcd(4, 60)=15, and the order of 10 in Z 24 is 24/gcd(10, 24)=12. The lcm(3, 5, 12)=60, so (8, 4, 10) is or order 60 in the group Z 12  Z 60  Z 24.

The structure of Finitely Generated Abelian Groups Theorem (Fundamental Theorem of Finitely Generated Abelian Groups) Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form Where the p i are primes, not necessarily distinct, and the r i are positive integers. The direct product is unique except for possible rearrangement of the factors; that is, the number (Betti number of G) of factors Z is unique and the prime powers are unique.

Example Example: Find all abelian groups, up to isomorphism, of order 360. Solution: Since the groups are to be of the finite order 360, no factors Z will appear in the direct product in the theorem. Since 360= Then by theorem, we get the following: 1.Z 2  Z 2  Z 2  Z 3  Z 3  Z 5 2.Z 2  Z 4  Z 3  Z 3  Z 5 3.Z 2  Z 2  Z 2  Z 9  Z 5 4.Z 2  Z 4  Z 9  Z 5 5.Z 8  Z 3  Z 3  Z 5 6.Z 8  Z 9  Z 5 There are six different abelian groups (up to isomorphism) of order 360.

Application Definition A group G is decomposable if it is isomorphic to a direct product of two proper nontrivial subgroups. Otherwise G is indecomposable. Theorem The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime. Theorem If m divides the order of a finite abelian group G, then G has a subgroup of order m. Theorem If m is a square free integer, that is, m is not divisible of the square of any prime, then every abelian group of order m is cyclic.