Blazars & GRBs Gabriele Ghisellini INAF-Osservatorio di Brera The fastest macroscopic objects of the Universe.

Slides:



Advertisements
Similar presentations
Extragalactic jets: a new perspective
Advertisements

ACTIVE GALACTIC NUCLEI X-ray broad--band study A. De Rosa, L. Piro Ginga/ROSAT/ASCA IASF-Roma Universita' di Roma La Sapienza Institute of.
Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets Extragalactic jets: a new perspective G. Ghisellini in coll. with F. Tavecchio.
Modeling and Understanding of Blazar Sources Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera G. Bonnoli, A. Celotti, L. Foschini, G. Ghirlanda,
Tom Esposito Astr Feb 09. Seyfert 1, Seyfert 2, QSO, QSO2, LINER, FR I, FR II, Quasars, Blazars, NLXG, BALQ…
CATANIA Feb 28th - Mar 1st 2011 F. Borsa (INAF - Osservatorio Astronomico di Brera) M. Ghigo (INAF - Osservatorio Astronomico di Brera)
Model Constraints from Multiwavelength Variability of Blazars
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulos (advisor), UMBC/GSFC Eileen Meyer,
1/26 Introduction 1/28 Radio Loud AGN Unification: Connecting Jets and Accretion Eileen Meyer Space Telescope Science Institute Giovanni Fossati, Rice.
The Accretion Mode - Morphology Link in Radio-Loud AGN jets: Towards a More Complete Unification Scheme Eileen Meyer Rice University University of Maryland,
The Phenomenon of Active Galactic Nuclei: an Introduction.
Shuang-Nan Zhang, Yuan Liu, Jin Zhang Institute of High Energy Physics
Active Galactic Nuclei Very small angular size: point like High luminosity: compared to host galaxies Broad-band continuum emission: radio to TeV Strong.
COSPAR Workshop, Udaipur 2003 Active Galactic Nuclei : I Keith Arnaud NASA Goddard University of Maryland.
Multiwavelength Polarization as a Diagnostic of Jet Physics Markus Böttcher North-West University Potchefstroom, South Africa Most of this work done by:
Unifying afterglow diversity Gabriele Ghisellini INAF-Osservatorio Astronomico di Brera - Italy with the help of G.Ghirlanda and M. Nardini.
GRB Spectral-Energy correlations: perspectives and issues
Markus B ӧ ttcher Ohio University Athens, OH VHE Gamma-Ray Induced Pair Cascades in Blazars and Radio Galaxies.
(Long) Gamma-Ray Bursts as cosmological probes Davide Lazzati (JILA, U of Colorado) Gabriele Ghisellini (OAB); Giancarlo Ghirlanda (OAB); Claudio Firmani.
Constraining the Properties of Dark Energy Using GRBs D. Q. Lamb (U. Chicago) High-Energy Transient ExplorerSwift Department of Astronomy, Nanjing University.
Early and Late Prompt emission Gabriele Ghisellini INAF-Osservatorio Astronomico di Brera - Italy + UHECRs and Magnetars with the help of D. Burlon, A.
Active Galaxies PHYS390 Astrophysics Professor Lee Carkner Lecture 22.
Models for non-HBL VHE Gamma-Ray Blazars Markus Böttcher Ohio University, Athens, OH, USA “TeV Particle Astrophysics” SLAC, Menlo Park, CA, July 13 – 17,
 The GRB literature has been convolved with my brain 
Quasar & Black Hole Science for GSMT Central question: Why do quasars evolve?
Yong-Yeon Keum (Seoul National University) APCTP/IEU-Focus-Program on Cosmology and Fundamental Physics.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
X-Ray Flashes D. Q. Lamb (U. Chicago) “Astrophysical Sources of High-Energy Particles and Radiation” Torun, Poland, 21 June 2005 HETE-2Swift.
Jet Models of X-Ray Flashes D. Q. Lamb (U. Chicago) Triggering Relativistic Jets Cozumel, Mexico 27 March –1 April 2005.
High energy emission in Gamma Ray Bursts Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera.
The Phenomenon of Active Galactic Nuclei: an Introduction.
AGN (Continued): Radio properties of AGN I) Basic features of radio morphology II) Observed phenomena Superluminal motion III) Unification schemes.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
Markos Georganopoulos 1,2 David Rivas 1,3 1 University of Maryland, Baltimore County 2 NASA Goddard Space Flight Center 3 Johns Hopkins University SUPER-EDDINGTON.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Gamma Ray Bursts: open issues  Brief history  Power  Short history of the paradigm: internal vs external shocks  Afterglows: external shocks  The.
Is the Amati relation due to selection effects? Lara Nava In collaboration with G. Ghirlanda, G.Ghisellini, C. Firmani Egypt, March 30-April 4, 2009 NeutronStars.
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
Leptonic and Hadronic Models for the Spectral Energy Distributions and High- Energy Polarization of Blazars Markus Böttcher North-West University Potchefstroom.
Minimum e Lorentz factor and matter content of jet in blazars Qingwen Wu Huazhong University of Science and Technology, China S.-J. Kang & L. Chen Collaborators:
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
Multiwavelength observations of the gamma-ray blazars detected by AGILE Filippo D’Ammando INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica Roma.
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulous, UMBC/GSFC Eileen Meyer, STScI MARLAM.
Flat Radio Sources. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets.
Probing the Inner Jet of the Quasar PKS 1510  089 with Multi-waveband Monitoring Alan Marscher Boston University Research Web Page:
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
1 Evolution of the E peak vs. Luminosity Relation for Long GRBs W.J. Azzam & M.J. Alothman Department of Physics University of Bahrain Kingdom of Bahrain.
On the role of BH spin and accretion in powering relativistic jets in AGN Laura Maraschi M.Colpi,G.Ghisellini,A.Perego,F.Tavecchio INAF - Brera Observatory,
Chandra Searches for Late-Time Jet Breaks in GRB Afterglows David Burrows, Judith Racusin, Gordon Garmire, George Ricker, Mark Bautz, John Nousek, & Dirk.
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
Mitch Begelman JILA, University of Colorado ACCRETING BLACK HOLES and their jets.
The most powerful persistent engine of Nature Gabriele Ghisellini INAF-Osservatorio di Brera Fabrizio Tavecchio, Laura Maraschi, Annalisa Celotti, Tullia.
G.Giovannini Department of Physics and Astronomy – Bologna University & IRA/INAF with the collaboration of M. Giroletti, K. Hada and M. Orienti (IRA/INAF)
Blazars: the gamma-ray view of AGILE on behalf of the AGILE WG-AGN Filippo D’Ammando Università degli Studi di Roma “Tor Vergata” INAF - Istituto di Astrofisica.
AGN: Linear and Circular Polarization
Lorenzo Amati INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna.
Jets at different scales and the connection with accretion L. Maraschi and F.Tavecchio INAF - Osservatorio Astronomico di Brera.
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Constraining the Location of Gamma-ray Emission in Blazar Jets Manasvita Joshi, Boston University Collaborators: Alan Marscher & Svetlana Jorstad (Boston.
Multi-wavelength emission models in blazars Gabriele Ghisellini INAF-Osservatorio di Brera with A. Celotti, R. Della Ceca, L. Foschini, G. Ghirlanda, F.
2 Institute for Astrophysical Research (Boston University) Iván Agudo 1,2 1 Instituto de Astrofísica de Andalucía (CSIC) The "Far Distance" Scenario for.
X-RAY PROPERTIES OF FR II/NLRG X-RAY PROPERTIES OF FR II/NLRG E. Trussoni 1, A. Capetti 1, B. Balmaverde 2 1 INAF – Osservatorio Astronomico di Torino,
Classification of Gamma-Ray Bursts: an observational review Paolo D’Avanzo INAF – Osservatorio Astronomico di Brera.
Photon breeding mechanism in jets and its observational signatures
INAF-Osservatorio di Brera
Announcements Observing Monday-Thursday of this week counts on the third exam. Fourth exam is Wednesday, November 17 Review will be Monday, November 15.
The Big 6 Research Model Step 3: Location and Access
Properties of Blazars The “blazar sequence” BL Lacs FSRQs
Presentation transcript:

Blazars & GRBs Gabriele Ghisellini INAF-Osservatorio di Brera The fastest macroscopic objects of the Universe

Lister ~10  > 10 Fermi FSRQs 

Earlier on: isotropic explosion

   Later: energy crisis + collapsar scenario

      jet Blazars: collimation 1/  GRBs: collimation GRBs: collimation  jet

      jet Blazars: collimation 1/  GRBs: collimation GRBs: collimation  jet

      jet L ~ L’  4 L ~ L’ (  jet ) 2 Blazars GRBs

0 Molinari+ 2007

0

0  E k,iso n t peak 3 1/8 t peak

Ghirlanda Liang+ 2012

Blazars: the general picture

Torus ~1-10 pc Broad Line Region ~0.2 pc Within R BLR U BLR = const Within R Torus U IR = const  R BLR R Torus disk Big blazars L>0.01L Edd

BLR <<0.2 pc weak cooling SSC only “ADAF disk”  L<0.01L Edd BL Lacs

  R diss FSRQs: emission lines  many seed photons BL Lacs: no or weak lines

FSRQs BL Lacs  FSRQs  R diss FSRQs BL Lacs

  FSRQs FSRQsFSRQs

Blazars and GRBs: same efficiency

Collimation corrected Nemmen+ Science 2012 blazars GRBs

Fermi blazars, one p per e- GRBs

Jet launching Internal pressure or magnetic field? or magnetic field?

     n o R Jet opacity: blazars n o from M out     ~ P jet 1 P jet  1 L Edd Jet opacity: GRBs aT 0 4 kT 0 ~ n +     ~ P jet,51 M1M1M1M /23/4

Jet launching In GRBs we have 2 possibilities: - internal pressure: the huge optical depth traps photons inside - magnetic field In blazars: - internal pressure: the optical depth is small - magnetic field

Jet launching In GRBs we have 2 possibilities: - internal pressure: the huge optical depth traps photons inside - magnetic field In blazars: - internal pressure: the optical depth is small - magnetic field Magnetic field: - Produced and amplified by the disk - Link with accretion

Blandford & Znajek  U B ~  c R s This explains why P j ~ L d B ~ G in GRBs B ~ 10 4 G in blazars B ~ 10 9 G in galactic superluminals

synchro EC Small B torusdisk X-ray corona

Fermi FSRQs Power in cold protons (1 per emitting e-) Power in rel. electrons Power in Poynting flux Power in radiation (model indipendent) Disk luminosity

M out /M in for blazars and for GRBs P jet =  M out c 2 L d =  M in c 2 for blazars:

M out /M in for blazars and for GRBs P jet =  M out c 2 L d =  M in c 2 for blazars:  P jet LdLdLdLd M out M in = ~ blazars

M out /M in for blazars and for GRBs P jet =  M out c 2 L d =  M in c 2 for blazars: for GRBs: M in ~ 0.1 M O t burst  P jet LdLdLdLd M out M in = M out M in =  c M O EkEkEkEk ~ 5.5x10 -4 2222 E k52 ~ blazars

Blazars and GRBs: a difference

Blazars: the redder the more powerful  cooling GRBs: the bluer the more powerful  heating??  ? “Amati” “Ghirlanda” E peak [keV] E [erg]

Conclusions Jets are the most efficient engine of Nature Compare jet power and L disk as a function of the accretion rate. Normalize to Eddington.

? Late prompt in GRBs?

blazars GBRs

Fossati et al. 1998; Donato et al The “blazar sequence” FSRQs BL Lacs BATIntegral

FSRQs Line strength Fossati et al. 1998; Donato et al. 2001

FSRQs BL Lacs M/M Edd Fossati et al. 1998; Donato et al Next talk by Meyer

Sbarrato SDSS+1LAC Do we really need to divide blazars? 5x10 -4 EW<5A EW>5A Narayan & Yi 1995: L BLR /L Edd ~ Sharma+ 2007: L BLR /L Edd ~ M-  Plotkin+ 2011

Black hole masses (for FSRQs)

UVOT XRT Fermi GG, Tavecchio & Ghirlanda 2009 Low energy synchro peak: leave the disk naked! torus disk X-ray corona synchro SSC EC  M BH =2x10 9

BAT M BH =10 10

The jet cannot have less power than what required to produce the observed luminosity: P jet L obs 2222 > If P jet is twice as much,  halves. We can take that as the minimum P jet. This limit is model-independent.

  

1 proton per electron  no pairs Having pairs would reduce P jet. But where are they created?

Pause P jet ~ Mc 2, even larger than L dP jet ~ Mc 2, even larger than L d For all M/M EddFor all M/M Edd BL Lacs  ADAF FSRQs  SSBL Lacs  ADAF FSRQs  SS L BLR /L Edd divides BL Lacs from FSRQsL BLR /L Edd divides BL Lacs from FSRQs Matter, not magnetic, dominatedMatter, not magnetic, dominated

 P r = radiation ~ L obs /  2 P e = relat. electrons P p = protons P B = B-field R jet power and accretion luminosity ~10 17 cm Shakura-Sunjaev disk: L d P jet = P e +P p +P B

What is a blazar? A jetted AGN, whose jet is relativistic (  ~10) and is “pointing at us”. A jetted AGN, whose jet is relativistic (  ~10) and is “pointing at us”. To be more quantitative: To be more quantitative:  view   For each blazar, 2  2 radio-loud AGN pointing elsewhere: FR I and FRII radio- galaxies

3 months, 10  BL Lacs Flat Steep FSRQs LLLL Fossati et al. 1998; Donato et al. 2001

M/ M Edd GG, Maraschi, Tavecchio years– 4  Ackermann+ 2011

Molinari+ 2007

Isotropic Collimation corrected