Csci5233 Computer Security1 Bishop: Chapter 10 (Cont.) Key Management: Certificates.

Slides:



Advertisements
Similar presentations
An Alternative to Short Lived Certificates By Vipul Goyal Department of Computer Science & Engineering Institute of Technology Banaras Hindu University.
Advertisements

CIS 725 Key Exchange Protocols. Alice ( PB Bob (M, PR Alice (hash(M))) PB Alice Confidentiality, Integrity and Authenication PR Bob M, hash(M) M, PR Alice.
Internet and Intranet Protocols and Applications Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Arthur Goldberg Computer Science Department New York.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
1 IS 2150 / TEL 2810 Introduction to Security James Joshi Associate Professor, SIS Lecture 8 Nov 2, 2010 Key Management Network Security.
Csci5233 Computer Security1 GS: Chapter 6 Using Java Cryptography for Authentication (Part B)
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Digital Signatures Dan Fleck CS 469: Security Engineering These slides are modified with permission from Bill Young (Univ of Texas) Coming up: Digital.
Public Key Management and X.509 Certificates
Chapter 14 From Cryptography and Network Security Fourth Edition written by William Stallings, and Lecture slides by Lawrie Brown, the Australian Defence.
Computer Security Key Management. Introduction We distinguish between a session key and a interchange key ( long term key ). The session key is associated.
Computer Security Key Management
CSCI283 Fall 2005 GWU All slides from Bishop’s slide set Public Key Infrastructure (PKI)
November 1, 2004Introduction to Computer Security ©2004 Matt Bishop Slide #9-1 Chapter 9: Key Management Session and Interchange Keys Key Exchange Cryptographic.
November 1, 2006Sarah Wahl / Graduate Student UCCS1 Public Key Infrastructure By Sarah Wahl.
1 Key Establishment Symmetric key problem: How do two entities establish shared secret key in the first place? Solutions: Deffie-Hellman trusted key distribution.
1 Digital Signatures CSSE 490 Computer Security Mark Ardis, Rose-Hulman Institute April 12, 2004.
Chapter 9: Key Management
1 Key Management CSSE 490 Computer Security Mark Ardis, Rose-Hulman Institute April 1, 2004.
1 Key Establishment Symmetric key problem: How do two entities establish shared secret key over network? Solution: trusted key distribution center (KDC)
Slide #9-1 Chapter 9: Key Management Session and Interchange Keys Key Exchange Cryptographic Key Infrastructure Storing and Revoking Keys Digital Signatures.
Security Management.
Computer Science Public Key Management Lecture 5.
Csci5233 Computer Security1 Bishop: Chapter 10 Key Management: Digital Signature.
Secure r How do you do it? m Need to worry about sniffing, modifying, end- user masquerading, replaying. m If sender and receiver have shared secret.
Cryptography and Network Security Chapter 14 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Csci5233 Computer Security1 Bishop: Chapter 10 (Cont.) Key Management: Storage & Revoking.
Csci5233 Computer Security1 Bishop: Chapter 14 Representing Identity.
Public Key Infrastructure (X509 PKI) Presented by : Ali Fanian.
Digital Signatures. Public Key Cryptography Public Key Cryptography Requirements 1.It must be computationally easy to encipher or decipher a message.
1 IS 2150 / TEL 2810 Information Security & Privacy James Joshi Associate Professor, SIS Lecture 2 Sept 4, 2013 Key Management Network Security.
1 Chapter 9: Key Management All algorithms we have introduced are based on one assumption: keys have been distributed. But how to do that? Key generation,
1 IS 2150 / TEL 2810 Introduction to Security James Joshi Assistant Professor, SIS Lecture 10 Nov 8, 2007 Hash Functions Key Management.
Key Management. Session and Interchange Keys  Key management – distribution of cryptographic keys, mechanisms used to bind an identity to a key, and.
23-1 Last time □ P2P □ Security ♦ Intro ♦ Principles of cryptography.
1 Digital Certificates (X.509, OpenPGP), Security Protocols James Joshi, Associate Professor University of Pittsburgh.
Key Management and Identity CS461/ECE422 Spring 2012.
Network Security7-1 CIS3360: Chapter 8: Cryptography Application of Public Cryptography Cliff Zou Spring 2012 TexPoint fonts used in EMF. Read the TexPoint.
Public Key Infrastructure (X509 PKI) Presented by : Ali Fanian
NETWORK SECURITY.
Courtesy of Professors Chris Clifton & Matt Bishop INFSCI 2935: Introduction of Computer Security1 October 23, 2003 Certificates, Authentication & Identity,
Matej Bel University Cascaded signatures Ladislav Huraj Department of Computer Science Faculty of Natural Sciences Matthias Bel University Banska Bystrica.
Merkle trees Introduced by Ralph Merkle, 1979 An authentication scheme
Key Management. Authentication Using Public-Key Cryptography  K A +, K B + : public keys Alice Bob K B + (A, R A ) 1 2 K A + (R A, R B,K A,B ) 3 K A,B.
Csci5233 Computer Security1 Bishop: Chapter 10 Key Management.
Chapt. 10 – Key Management Dr. Wayne Summers Department of Computer Science Columbus State University
Slide #9-1 Chapter 9: Key Management Session and Interchange Keys Key Exchange Cryptographic Key Infrastructure Storing and Revoking Keys Digital Signatures.
Lecture 9 Overview. Digital Signature Properties CS 450/650 Lecture 9: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Csci5233 Computer Security1 Bishop: Chapter 14 Representing Identity.
1IS2150/TEL2810: Introduction to Computer Security Nov 1, 2005 Introduction to Computer Security Lecture 8 Key Management.
Prof. Reuven Aviv, Nov 2013 Public Key Infrastructure1 Prof. Reuven Aviv Tel Hai Academic College Department of Computer Science Public Key Infrastructure.
Key management issues in PGP
Contents Introduction. 9.1 Session and Interchange Keys.
Chapter 9. Key management
Key Management October 26, 2006 Lecture 7
Cryptography and Network Security
Information Security message M one-way hash fingerprint f = H(M)
Digital Signatures A digital signature is a protocol that produces the same effect as a real signature: It is a mark that only the sender can make but.
Information Security message M one-way hash fingerprint f = H(M)
Information Security message M one-way hash fingerprint f = H(M)
Chapter 10: Key Management
Public Key Infrastructure (PKI)
Information Security message M one-way hash fingerprint f = H(M)
Digital Certificates and X.509
CSC 482/582: Computer Security
Overview Key exchange Cryptographic key infrastructure Key storage
Bishop: Chapter 10 Key Management: Digital Signature
Chapter 9: Key Management
PKI (Public Key Infrastructure)
Chapter 10: Key Management
Presentation transcript:

csci5233 Computer Security1 Bishop: Chapter 10 (Cont.) Key Management: Certificates

csci5233 Computer Security2 Topics

csci5233 Computer Security3 Cryptographic Key Infrastructure Goal: bind identity to key Classical: not possible as all keys are shared –Use protocols to agree on a shared key (see earlier) Public key: bind identity to public key –Crucial as people will use key to communicate with principal whose identity is bound to key –Erroneous binding means no secrecy between principals –Assume principal identified by an acceptable name

csci5233 Computer Security4 Certificates Create token (message) containing –Identity of principal (here, Alice) –Corresponding public key –Timestamp (when issued) –Other information (perhaps identity of signer) signed by trusted authority (here, Cathy) C A = { e A || Alice || T } d C

csci5233 Computer Security5 Use Bob gets Alice’s certificate –If he knows Cathy’s public key, he can decipher the certificate When was certificate issued? Is the principal Alice? –Now Bob has Alice’s public key Problem: Bob needs Cathy’s public key to validate certificate –Problem pushed “up” a level –Two approaches: Merkle’s tree, signature chains

csci5233 Computer Security6 Merkle’s Tree Scheme Keep certificates in a file –Changing any certificate changes the file –Use crypto hash functions to detect this Define hashes recursively –h is hash function –C i is certificate i Hash of file (h(1,4) in example) known to all h(1,4) h(1,2) h(3,4) h(1,1) h(2,2) h(3,3) h(4,4) C 1 C 2 C 3 C 4

csci5233 Computer Security7 Validation To validate C 1 : –Compute h(1, 1) –Obtain h(2, 2) –Compute h(1, 2) –Obtain h(3, 4) –Compute h(1,4) –Compare to known h(1, 4) Need to know hashes of children of nodes on path that are not computed h(1,4) h(1,2) h(3,4) h(1,1) h(2,2) h(3,3) h(4,4) C 1 C 2 C 3 C 4

csci5233 Computer Security8 Details f: D  D  D maps bit strings to bit strings h: N  N  D maps integers to bit strings –if i ≥ j, h(i, j) = f(C i, C j ) –if i < j, h(i, j) = f(h(i,  (i+j)/2  ), h(  (i+j)/2  +1, j))

csci5233 Computer Security9 Problem File must be available for validation –Otherwise, can’t recompute hash at root of tree –Intermediate hashes would do Not practical in most circumstances –Too many certificates and users –Users and certificates distributed over widely separated systems

csci5233 Computer Security10 Certificate Signature Chains Create certificate –Generate hash of certificate –Encipher hash with issuer’s private key Validate –Obtain issuer’s public key –Decipher enciphered hash –Recompute hash from certificate and compare Problem: getting issuer’s public key

csci5233 Computer Security11 X.509 Chains Some certificate components in X.509v3: –Version –Serial number –Signature algorithm identifier: hash algorithm –Issuer’s name; uniquely identifies issuer –Interval of validity –Subject’s name; uniquely identifies subject –Subject’s public key –Signature: enciphered hash

csci5233 Computer Security12 X.509 Certificate Validation Obtain issuer’s public key –The one for the particular signature algorithm Decipher signature –Gives hash of certificate Recompute hash from certificate and compare –If they differ, there’s a problem Check interval of validity –This confirms that certificate is current

csci5233 Computer Security13 Issuers Certification Authority (CA): entity that issues certificates –Multiple issuers pose validation problem –Alice’s CA is Cathy; Bob’s CA is Don; how can Alice validate Bob’s certificate? –Have Cathy and Don cross-certify Each issues certificate for the other

csci5233 Computer Security14 Validation and Cross-Certifying Certificates: –Cathy > –Dan –Cathy > –Dan > Alice validates Bob’s certificate –Alice obtains Cathy > –Alice uses (known) public key of Cathy to validate Cathy > –Alice uses Cathy > to validate Dan >

csci5233 Computer Security15 PGP Chains OpenPGP certificates are composed of packets a certificate := One public key packet + Zero or more signature packets Public key packet: –Version (3 or 4; 3 compatible with all versions of PGP, 4 not compatible with older versions of PGP) –Creation time –Validity period (not present in version 3) –Public key algorithm, associated parameters –Public key

csci5233 Computer Security16 OpenPGP Signature Packet Version 3 signature packet –Version (3) –Signature type (level of trust) –Creation time (when next fields hashed) –Signer’s key identifier (identifies key to encipher hash) –Public key algorithm (used to encipher hash) –Hash algorithm –Part of signed hash (used for quick check) –Signature (enciphered hash) Version 4 packet more complex

csci5233 Computer Security17 PGP vs X.509 certificates 1.Single certificate may have multiple signatures e.g., Ellen, Fred, Giselle, Bob > (See the diagram in the next slide.) 2.Notion of “trust” embedded in each signature –Range from “untrusted” to “ultimate trust” –Signer defines meaning of trust level (no standards!) –The signatures for a single key may have different levels of trust. All version 4 keys signed by the subject –Called “self-signing”

csci5233 Computer Security18 Validating Certificates Alice needs to validate Bob’s OpenPGP cert, e.g., Ellen, Fred, Giselle, Bob > –Does not know Fred, Giselle, or Ellen Alice gets Giselle’s cert –Knows Henry slightly, but his signature is at “casual” level of trust Alice gets Ellen’s cert –Knows Jack, so uses his cert to validate Ellen’s, then hers to validate Bob’s Bob Fred Giselle Ellen Irene Henry Jack Arrows show signatures Self signatures not shown

csci5233 Computer Security19 Next  Bishop, Chapter 10: Key storage –Key escrow –Key revocation Digital signatures