CSE 534 Fundamentals of Computer Networks Lecture 4: Bridging (From Hub to Switch by Way of Tree) Based on slides from D. Choffnes Northeastern U. Revised.

Slides:



Advertisements
Similar presentations
Communication Networks Recitation 3 Bridges & Spanning trees.
Advertisements

University of Calgary – CPSC 441.  We need to break down big networks to sub-LANs  Limited amount of supportable traffic: on single LAN, all stations.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 19 Introduction to Computer Networks.
CS 4700 / CS 5700 Network Fundamentals Lecture 7: Bridging (From Hub to Switch by Way of Tree) Revised 1/14/13.
CPSC 441 TUTORIAL TA: FANG WANG HUBS, SWITCHES AND BRIDGES Parts of the slides contents are courtesy of the following people: Jim Kurose, Keith Ross:
1 Computer Networks Internetworking Devices. 2 Repeaters Hubs Bridges –Learning algorithms –Problem of closed loops Switches Routers.
CSEE W4140 Networking Laboratory Lecture 8: LAN Switching Jong Yul Kim
1 LAN switching and Bridges Relates to Lab 6. Covers interconnection devices (at different layers) and the difference between LAN switching (bridging)
CSE390 Advanced Computer Networks Lecture 7: Bridging (From Hub to Switch by Way of Tree) Based on slides from D. Choffnes Northeastern U. Revised Fall.
Introduction to Computer Networks 09/23 Presenter: Fatemah Panahi.
COMS W COMS W Lecture 7. LAN Switching: Bridges & Spanning Tree Protocol.
LAN switching and Bridges
1 25\10\2010 Unit-V Connecting LANs Unit – 5 Connecting DevicesConnecting Devices Backbone NetworksBackbone Networks Virtual LANsVirtual LANs.
1 LAN switching and Bridges Relates to Lab 6. Covers interconnection devices (at different layers) and the difference between LAN switching (bridging)
Layer 2 Switch  Layer 2 Switching is hardware based.  Uses the host's Media Access Control (MAC) address.  Uses Application Specific Integrated Circuits.
Connecting LANs, Backbone Networks, and Virtual LANs
17-LAN extensions: Fiber Modems, Repeaters, Bridges and Switches Dr. John P. Abraham Professor UTPA.
T. S. Eugene Ngeugeneng at cs.rice.edu Rice University1 COMP/ELEC 429 Introduction to Computer Networks Lecture 8: Bridging Slides used with permissions.
Connecting LANs, Backbone Networks, and Virtual LANs
1 LAN switching and Bridges. 2 Outline Interconnection devices Bridges/LAN switches vs. Routers Bridges Learning Bridges Transparent bridges.
1 CS 4396 Computer Networks Lab LAN Switching and Bridges.
1 LAN switching and Bridges CS491G: Computer Networking Lab V. Arun Slides adapted from Liebeherr and El Zarki, and Kurose and Ross.
CSC 336 Data Communications and Networking Lecture 7d: Interconnecting LAN Dr. Cheer-Sun Yang Spring 2001.
Review: –Ethernet What is the MAC protocol in Ethernet? –CSMA/CD –Binary exponential backoff Is there any relationship between the minimum frame size and.
Ethernet (LAN switching)
15.1 Chapter 15 Connecting LANs, Backbone Networks, and Virtual LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
OSI Model. Switches point to point bridges two types store & forward = entire frame received the decision made, and can handle frames with errors cut-through.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Local Area Networks.
Computer Networks 15-1 Chapter 15. Connecting LANs, Backbone Networks, and Virtual LANs 15.1 Connecting devices 15.2 Backbone networks 15.3 Virtual LANs.
T. S. Eugene Ngeugeneng at cs.rice.edu Rice University1 COMP/ELEC 429 Introduction to Computer Networks Scaling Broadcast Ethernet Some slides used with.
Sem1 - Module 8 Ethernet Switching. Shared media environments Shared media environment: –Occurs when multiple hosts have access to the same medium. –For.
1 Data Link Layer Lecture 23 Imran Ahmed University of Management & Technology.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
Computer Networks Lecture 5a: Interconnecting LANs Based on slides from D. Choffnes Northeastern U. and P. Gill from StonyBrook University Revised Autumn.
M. Veeraraghavan (originals by J. Liebeherr) 1 Need for Routing in Ethernet switched networks What do bridges do if some LANs are reachable only in multiple.
M. Veeraraghavan (originals by J. Liebeherr) 1 Internetworking Bridges Routing with Bridges * * Reading material is EL 536 textbook (sections 14.1 and.
5: DataLink Layer 5a-1 Bridges and spanning tree protocol Reference: Mainly Peterson-Davie.
1 Chapter 3: Packet Switching (Switched LANs) Dr. Rocky K. C. Chang 23 February 2004.
5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.
1 LAN switching and Bridges Relates to Lab Outline Interconnection devices Bridges/LAN switches vs. Routers Bridges Learning Bridges Transparent.
15.1 Chapter 15 Connecting LANs, Backbone Networks, and Virtual LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
CS 3700 Networks and Distributed Systems Bridging (From Hub to Switch by Way of Tree) Revised 8/19/15.
1 LAN switching and Bridges Relates to Lab 6. Covers interconnection devices (at different layers) and the difference between LAN switching (bridging)
Ethernet switches and IP routers
Chapter 16– Connecting LANs
CS 3700 Networks and Distributed Systems
Lab 2 – Hub/Switch Data Link Layer
MAC Addresses and ARP 32-bit IP address:
Bridging.
3. Internetworking (part 2: switched LANs)
Chapter 4 Data Link Layer Switching
ARP: Address Resolution Protocol
Chapter 3 Part 1 Switching and Bridging
Lab 2 – Hub/Switch Data Link Layer
CS 3700 Networks and Distributed Systems
Computer Networks Lecture 6a: Interconnecting LANs
CS 457 – Lecture 8 Switching and Forwarding
LAN switching and Bridges
CS 4700 / CS 5700 Network Fundamentals
LAN switching and Bridges
Connecting LANs, Backbone Networks,
Chapter 6 The Link Layer and LANs
Bridges and Extended LANs
Chapter 16 Connecting LANs, Backbone Networks, and Virtual LANs
LAN switching and Bridges
CS 4700 / CS 5700 Network Fundamentals
Dr. Rocky K. C. Chang 23 February 2004
Chapter 15. Connecting Devices
LAN switching and Bridges
Presentation transcript:

CSE 534 Fundamentals of Computer Networks Lecture 4: Bridging (From Hub to Switch by Way of Tree) Based on slides from D. Choffnes Northeastern U. Revised Spring 2015 by P. Gill

Just Above the Data Link Layer 2  Bridging  How do we connect LANs?  Function:  Route packets between LANs  Key challenges:  Plug-and-play, self configuration  How to resolve loops Application Presentation Session Transport Network Data Link Physical

 Pros: Simplicity  Hardware is stupid and cheap  Cons: No scalability  More hosts = more collisions = pandemonium Recap 3  Originally, Ethernet was a broadcast technology Tee Connector Terminator Hub Repeater

Bridging the LANs 4  Bridging limits the size of collision domains  Vastly improves scalability  Question: could the whole Internet be one bridging domain?  Tradeoff: bridges are more complex than hubs  Physical layer device vs. data link layer device  Need memory buffers, packet processing hardware, routing tables Hub

Bridges 5  Original form of Ethernet switch  Connect multiple IEEE 802 LANs at layer 2  Goals  Reduce the collision domain  Complete transparency “Plug-and-play,” self-configuring No hardware of software changes on hosts/hubs Should not impact existing LAN operations Hub 1.Forwarding of frames 2.Learning of (MAC) Addresses 3.Spanning Tree Algorithm (to handle loops)

00:00:00:00:00:DD13 minutes Frame Forwarding Tables 6  Each bridge maintains a forwarding table MAC AddressPortAge 00:00:00:00:00:AA11 minute 00:00:00:00:00:BB27 minutes 00:00:00:00:00:CC32 seconds

Learning Addresses 7  Manual configuration is possible, but…  Time consuming  Error Prone  Not adaptable (hosts may get added or removed)  Instead, learn addresses using a simple heuristic  Look at the source of frames that arrive on each port Hub 00:00:00:00:00:AA 00:00:00:00:00:BB Port 1Port 2 00:00:00:00:00:BB20 minutes MAC AddressPortAge 00:00:00:00:00:AA10 minutes Delete old entries after a timeout

The Danger of Loops 8   This continues to infinity  How do we stop this?  Remove loops from the topology  Without physically unplugging cables  uses an algorithm to build and maintain a spanning tree for routing AA Port 1 Hub Port 1 Hub Port 2 AA1 1 BB CCDD AA

Spanning Tree Definition 9  A subset of edges in a graph that:  Span all nodes  Do not create any cycles  This structure is a tree

802.1 Spanning Tree Approach Elect a bridge to be the root of the tree 2. Every bridge finds shortest path to the root 3. Union of these paths becomes the spanning tree  Bridges exchange Configuration Bridge Protocol Data Units (BPDUs) to build the tree  Used to elect the root bridge  Calculate shortest paths  Locate the next hop closest to the root, and its port  Select ports to be included in the spanning trees

Definitions 11  Bridge ID (BID) =  Root Bridge: bridge with the lowest BID in the tree  Path Cost: cost (in hops) from a transmitting bridge to the root  Each port on a bridge has a unique Port ID  Root Port: port that forwards to the root on each bridge  Designated Bridge: the bridge on a LAN that provides the minimal cost path to the root  The designated bridge on each LAN is unique

Determining the Root 12  Initially, all hosts assume they are the root  Bridges broadcast BPDUs:  Based on received BPDUs, each switch chooses:  A new root (smallest known Root ID)  A new root port (what interface goes towards the root)  A new designated bridge (who is the next hop to root) Root IDPath Cost to RootBridge ID

Spanning Tree Construction 13 0: 0/0 12: 12/0 3: 3/0 27: 27/0 41: 41/0 9: 9/0 68: 68/0 27: 0/1 12: 0/1 41: 3/1 68: 9/1 41: 0/2 3: 0/2 68: 3/2 9: 3/2 68: 0/3 9: 0/3

Bridges vs. Switches 14  Bridges make it possible to increase LAN capacity  Reduces the amount of broadcast packets  No loops  Switch is a special case of a bridge  Each port is connected to a single host Either a client machine Or another switch  Links are full duplex  Simplified hardware: no need for CSMA/CD!  Can have different speeds on each port

Switching the Internet 15  Capabilities of switches:  Network-wide routing based on MAC addresses  Learn routes to new hosts automatically  Resolve loops  Could the whole Internet be one switching domain? NO

Limitations of MAC Routing 16  Inefficient  Flooding packets to locate unknown hosts  Poor Performance  Spanning tree does not balance load  Hot spots  Extremely Poor Scalability  Every switch needs every MAC address on the Internet in its routing table!  IP addresses these problems (next …)